Конденсатор со стрелкой. Электрический конденсатор. Виды конденсаторов. Что такое электрический конденсатор

Конденсатор (capacitor, cap) - это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.

Основной характеристикой конденсатора является ёмкость. Она обозначается символом C , единица её измерения - Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.

Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0.000000000001 Ф) до десятков микрофарад (μF, мкФ = 0.000001). Самые распростронённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой - к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.

Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение . Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток , который бы уравнял пластины.

Зарядка и разрядка

Рассмотрим такую схему:

Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение - он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:

C - ёмкость, e - экспонента (константа ≈ 2.71828), t - время с момента начала зарядки. Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R ) и зарядка будет происходить очень быстро.

Изобразив функцию на графике, получим такую картину:

Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение V c , которое «сопротивляется» V in .

Заканчивается всё тем, что V c становится равным по значению V in и ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium). Заряд при этом достигает максимума.

Вспомнив Закон Ома , мы можем изобразить зависимость силы тока в нашей цепи при зарядке конденсатора.

Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

На пластинах конденсатора заряды противоположных знаков, они создают напряжение - появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q 0 обозначить заряд, который был на конденсаторе изначально, то:

Эти величины на графике выглядят следующим образом:

Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.

Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.

Применение на практике

Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:

    Резервный конденсатор (bypass cap) - для уменьшения ряби напряжения питания

    Фильтрующий конденсатор (filter cap) - для разделения постоянной и изменяющейся составляющих напряжения, для выделения сигнала

Резервный конденсатор

Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.

Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.

Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор

В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.

Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».

В итоге, сглаженное напряжение выглядит так:

Типичный конденсаторы, который используется для этих целей - керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.

В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.

Фильтрующий конденсатор

Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.

Рассмотрим схему подключения электретного микрофона. Электретный микрофон - самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.

Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.

На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C , на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.

Слышимый звук, который нам и интересен, находится низкочастотном диапазоне: 20 Гц - 20 кГц. Чтобы выделить из напряжения именно сигнал звука, а не высокочастотные шумы питания, в качестве C используется медленный электролитический конденсатор номиналом 10 мкФ. Если был бы использован быстрый конденсатор, например, на 10 нФ, на выход прошли бы сигналы, не связанные со звуком.

Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход V out обычно подключают к операционному уселителю.

Соединение конденсаторов

Если сравнивать с соединением резисторов , расчёт итогового номинала конденсаторов выглядит наоборот.

При параллельном соединении суммарная ёмкость суммируется:

При последовательном соединении, итоговая ёмкость расчитывается по формуле:

Если конденсатора всего два, то при последовательном соединении:

В частном случае двух одинаховых конденсаторов суммарная ёмкость последовательного соединения равна половине ёмкости каждого.

Предельные характеристики

В документации на каждый конденсатор указано максимальное допустимое напряжение. Его превышение может привести к пробою диэлектрика и взрыву конденсатора. Для электролитических конденсаторов обязательно должна быть соблюдена полярность. В противном случае либо вытечет электролит, либо опять же будет взрыв.

Было рассказано об электролитических конденсаторах. В основном они применяются в цепях постоянного тока, в качестве фильтрующих емкостей в выпрямителях. Также без них не обойтись в развязывающих цепочках питания транзисторных каскадов, стабилизаторах и транзисторных фильтрах. При этом, как было сказано в статье, постоянного тока они не пропускают, а на переменном работать вовсе не хотят.

Для цепей переменного тока существуют неполярные конденсаторы, причем, множество их типов говорит о том, что условия работы очень разнообразные. В тех случаях, когда требуется высокая стабильность параметров, а частота достаточно высокая, применяются конденсаторы воздушные и керамические.

К параметрам таких конденсаторов предъявляются повышенные требования. В первую очередь это высокая точность (маленький допуск), а также незначительный температурный коэффициент емкости ТКЕ. Как правило, такие конденсаторы ставятся в колебательных контурах приемной и передающей радиоаппаратуры.

Если же частота невелика, например, частота осветительной сети или частоты звукового диапазона, то вполне возможно применение бумажных и металлобумажных конденсаторов.

Конденсаторы с бумажным диэлектриком имеют обкладки из тонкой металлической фольги, чаще всего алюминиевой. Толщина обкладок колеблется в пределах 5…10мкм, что зависит от конструкции конденсатора. Между обкладками вложен диэлектрик из конденсаторной бумаги, пропитанной изоляционным составом.

В целях повышения рабочего напряжения конденсатора бумага может быть положена в несколько слоев. Весь этот пакет скручивается, как ковровая дорожка, и помещается в корпус круглого или прямоугольного сечения. При этом, конечно, от обкладок делаются выводы, а корпус такого конденсатора ни с чем не соединен.

Бумажные конденсаторы используются в низкочастотных цепях при больших рабочих напряжениях и значительных токах. Одно из таких очень распространенных применений - включение трехфазного двигателя в однофазную сеть.

В металлобумажных конденсаторах роль обкладок выполняет распыленный в вакууме на конденсаторную бумагу тончайший слой металла, все того же алюминия. Конструкция конденсаторов такая же, как и бумажных, правда, габариты намного меньше. Область применения обоих типов примерно одинакова: цепи постоянного, пульсирующего и переменного тока.

Конструкция бумажных и металлобумажных конденсаторов, кроме емкости, обеспечивает этим конденсаторам еще и значительную индуктивность. Это приводит к тому, что на какой-то частоте бумажный конденсатор превращается в резонансный колебательный контур. Поэтому такие конденсаторы применяются лишь на частотах не более 1МГц. На рисунке 1 показаны бумажные и металлобумажные конденсаторы, выпускавшиеся в СССР.

Рисунок 1.

Старинные металлобумажные конденсаторы имели свойство самовосстановления после пробоя. Это были конденсаторы типов МБГ и МБГЧ, но теперь их заменили конденсаторы с керамическим или органическим диэлектриком типов К10 или К73.

В некоторых случаях, например, в аналоговых запоминающих устройствах, или по другому, устройствах выборки-хранения (УВХ) к конденсаторам предъявляются особые требования, в частности, малый ток утечки. Тогда на помощь приходят конденсаторы, диэлектрики которых выполнены из материалов с высоким сопротивлением. В первую очередь это фторопластовые, полистирольные и полипропиленовые конденсаторы. Несколько меньшее сопротивление изоляции у слюдяных, керамических и поликарбонатных конденсаторов.

Эти же конденсаторы используются в импульсных схемах, когда требуется высокая стабильность. В первую очередь для формирования различных временных задержек, импульсов определенной длительности, а также для задания рабочих частот различных генераторов.

Чтобы временные параметры схемы были еще более стабильны, в некоторых случаях рекомендуется использовать конденсаторы с повышенным рабочим напряжением: ничего плохого нет в том, чтобы в схему с напряжением 12В установить конденсатор с рабочим напряжением 400 или даже 630В. Места такой конденсатор займет, конечно, побольше, но и стабильность работы всей схемы в целом тоже увеличится.

Электрическая емкость конденсаторов измеряется в Фарадах Ф (F), но это величина очень большая. Достаточно сказать, что емкость Земного шара не превышает 1Ф. Во всяком случае, именно так написано в учебниках физики. 1 Фарада это емкость, при которой при заряде q в 1 кулон разность потенциалов (напряжение) на обкладках конденсатора составляет 1В.

Из только что сказанного следует, что Фарада величина очень большая, поэтому на практике чаще используются более мелкие единицы: микрофарады (мкФ, µF), нанофарады (нФ, nF) и пикофарады (пФ, pF). Эти величины получаются с помощью использования дольных и кратных приставок, которые показаны в таблице на рисунке 2.

Рисунок 2.

Современные детали становятся все меньше, поэтому не всегда удается на них нанести полную маркировку, все чаще пользуются различными системами условных обозначений. Все эти системы в виде таблиц и пояснений к ним можно найти в интернете. На конденсаторах, предназначенных для SMD монтажа, чаще всего не ставится вообще никаких обозначений. Их параметры можно прочитать на упаковке.

Для того, чтобы выяснить, как ведут себя конденсаторы в цепях переменного тока, предлагается проделать несколько простейших опытов. При этом, каких-то особых требований к конденсаторам не предъявляется. Вполне подойдут самые обычные бумажные или металлобумажные конденсаторы.

Конденсаторы проводят переменный ток

Чтобы убедиться в этом воочию, достаточно собрать несложную схему, показанную на рисунке 3.

Рисунок 3.

Сначала надо включить лампу через конденсаторы C1 и C2, соединенные параллельно. Лампа будет светиться, но не очень ярко. Если теперь добавить еще конденсатор C3, то свечение лампы заметно увеличится, что говорит о том, что конденсаторы оказывают сопротивлению прохождению переменного тока. Причем, параллельное соединение, т.е. увеличение емкости, это сопротивление снижает.

Отсюда вывод: чем больше емкость, тем меньше сопротивление конденсатора прохождению переменного тока. Это сопротивление называется емкостным и в формулах обозначается как Xc. Еще Xc зависит от частоты тока, чем она выше, тем меньше Xc. Об этом будет сказано несколько позже.

Другой опыт можно проделать используя счетчик электроэнергии, предварительно отключив все потребители. Для этого надо соединить параллельно три конденсатора по 1мкФ и просто включить их в розетку. Конечно, при этом надо быть предельно осторожным, или даже припаять к конденсаторам стандартную штепсельную вилку. Рабочее напряжение конденсаторов должно быть не менее 400В.

После этого подключения достаточно просто понаблюдать за счетчиком, чтобы убедиться, что он стоит на месте, хотя по расчетам такой конденсатор эквивалентен по сопротивлению лампе накаливания мощностью около 50Вт. Спрашивается, почему не крутит счетчик? Об этом тоже будет рассказано в следующей статье.

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая - наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

Электрические цепи бывают двух видов - постоянными или переменными . Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный - не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

На вопрос Почему конденсатор не пропускает постоянный ток, но зато пропускает переменный? заданный автором Sodd15 sodd лучший ответ это Ток течёт только до тех пор, пока конденсатор заряжается.
В цепи постоянного тока конденсатор заряжается сравнительно быстро, после чего ток уменьшается и практически прекращается.
В цепи переменного тока конденсатор заряжается, затем напряжение меняет полярность, он начинает разряжаться, а потом заряжаться в обратную сторону, и т. д. - ток течёт постоянно.
Ну представьте себе банку, в которую можно налить воду только до тех пор, пока она не заполнится. Если напряжение постоянное, банка заполнится и после этого ток прекратится. А если напряжение переменное - вода в банку заливается - выливается - заливается и т. д.

Ответ от Просунуться [новичек]
спасибо ребята за классную информацию!!!


Ответ от Avotara [гуру]
Конденсатор не пропускает ток он может только заряжаться и разряжаться
На постоянном токе конденсатор заряжается 1 раз а дальше становится бесполезным в цепи.
На пульсирующем токе когда напряжение повышается он заряжается (накапливает в себе электрическую энергию) , а когда напряжение от максимального уровня начинает снижаться он возвращает энергию в сеть стабилизируя при этом напряжение.
На переменном токе когда напряжение возрастает от 0 к максимуму конденсатор заряжается, когда снижается от максимума до 0 разряжается возвращая энергию обратно в сеть, когда полярность меняется все происходит точно также но с другой полярностью.


Ответ от Вровень [гуру]
Конденсатор на самом деле не пропускает сквозь себя ток. Конденсатор сначала накапливает на своих обкладках заряды - на одной обкладке избыток электронов, на другой недостаток - а потом отдает их, в результате во внешней цепи электроны бегают туда-сюда - с одной обкладки убегают, на вторую прибегают, потом обратно. То есть движение электронов туда-сюда во внешней цепи обеспечивается, в ней идет ток - но не внутри конденсатора.
Сколько электронов может принять обкладка конденсатора при напряжении, в один вольт, называется емкостью конденсатора, но ее обычно измеряют не в триллионах электронов, а в условных единицах емкости - фарадах (микрофарадах, пикофарадах).
Когда говорят, что ток идет через конденсатор, это просто упрощение. Все происходит так, как будто бы через конденсатор шел ток, хотя на самом деле ток идет только снаружи конденсатора.
Если углубляться в физику, то перераспределение энергии в поле между пластинами конденсатора называют током смещения в отличие от тока проводимости, представляющего собой перемещение зарядов, но ток смещения - это уже понятие из электродинамики, связанное с уравнениями Максвелла, совсем другой уровень абстракции.


Ответ от сосочек [гуру]
в чисто физическом плане: конденсатор - есть развыв цепи, т. к. его прокладки не соприкасаются друг с другом, между ними диэлектрик. а как мы знаем диэлектрики не проводят электричесний ток. поэтому постоянный ток через него и не идёт.
хотя...
Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
а для переменного тока конденсатор является частью колебательного контура. он играет роль накопителя электрической энергии и в сочетаниии с катушкой, они прекрасно сосуществуют, переобразовывая электрическую энегрию в магнитную и обратно со скоростью/частотой равной их собственной omega = 1/sqrt(C*L)
пример: такое явление как молния. думаю слышал. хотя плохой пример, там зарядка происходит через электризацию, изза трения атмосферного воздуха о поверхность земли. но пробой всегда как и в конденсаторе происходит только при достижении так называемого пробивного напряжения.
не знаю, помогло ли тебе это 🙂


Ответ от Legend@ [новичек]
конденсатор работает как в переменном токе так и в постоянном, т. к. он заряжается на постоянном токе и не может никуда деть ту энергию, для этого в цепь соединяют через ключ обратную ветвь, для смены полярности, чтобы его разрядить и освободить место для новой порции, неа переменном на оборот, кандёр заряжается и разряжается за счет перемены полярностей....

Публикации по теме