Частные производные второго порядка примеры

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z’_x, z’_y $ и находятся по формулам:

Частные производные первого порядка

Частные производные второго порядка

Частная производная сложной функции

а) Пусть $ z (t) = f( x(t), y(t) ) $, тогда производная сложной функции определяется по формуле:

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ frac = -frac$$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z’_x = — frac; z’_y = — frac$$

Примеры решений

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z’_x = (x^2-y^2+4xy+10)’_x = 2x — 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z’_y = (x^2-y^2+4xy+10)’_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 — y^2 + 4xy + 10 $
Решение
Ответ
$$ z’_x = 2x+4y; z’_y = -2y+4x $$

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

Положим теперь $ x $ постоянной величиной:

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

Задаем $ x $ постоянной:

Теперь осталось найти смешанную производную. Можно продифференцировать $ z’_x $ по $ y $, а можно $ z’_y $ по $ x $, так как по теореме $ z»_ = z»_ $

Пример 2
Найти частные производные функции второго порядка $ z = e^ $
Решение
Ответ
$$ z’_x = ye^; z’_y = xe^; z»_ = yxe^ $$

Теперь ищем $ frac

$ и $ frac
$:

Подставляем всё это в формулу и записываем ответ:

$$ frac

= 2x cdot cos t + 2y cdot 3t^2 $$

Пример 3
Найти частную производную сложной функции $ z = x^2 + y^2, x = sin t, y = t^3 $
Решение
Ответ
$$ frac

= 2x cdot cos t + 2y cdot 3t^2 $$

Записываем функцию в формате: $ F(x,y,z) = 3x^3z — 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z’_x (y,z — const) = (x^3 z — 2z^2 + 3yz^2-4x+z-5)’_x = 3 x^2 z — 4 $$

$$ z’_y (x,y — const) = (x^3 z — 2z^2 + 3yz^2-4x+z-5)’_y = 3z^2 $$

Понятие частной производной

Каждая частная производная (по x и по y) функции двух переменных представляет собой обыкновенную производную функции одной переменной при фиксированном значении другой переменной:

(где y = const),

(где x = const).

Поэтому частные производные вычисляют по формулам и правилам вычисления производных функций одной переменной, считая при этом другую переменную постоянной (константой).

Если Вам не нужен разбор примеров и необходимого для этого минимума теории, а нужно лишь решение Вашей задачи, то переходите к калькулятору частных производных онлайн.

Если тяжело сосредоточиться, чтобы отслеживать, где в функции константа, то можно в черновом решении примера вместо переменной с фиксированным значением подставить любое число — тогда можно будет быстрее вычислить частную производную как обыкновенную производную функции одной переменной. Надо только не забыть при чистовом оформлении вернуть на место константу (переменную с фиксированном значением).

Описанное выше свойство частных производных следует из определения частной производной, которое может попасться в экзаменационных вопросах. Поэтому для ознакомления с определением ниже можно открыть теоретическую справку.

Понятие непрерывности функции z = f(x, y) в точке определяется аналогично этому понятию для функции одной переменной.

Функция z = f(x, y) называется непрерывной в точке если

(1)

(2)

Разность (2) называется полным приращением функции z (оно получается в результате приращений обоих аргументов).

Если изменение функции z происходит при изменении только одного из аргументов, например, x, при фиксированном значении другого аргумента y, то функция получит приращение

(3)

называемое частным приращением функции f(x, y) по x.

Рассматривая изменение функции z в зависимости от изменения только одного из аргументов, мы фактически переходим к функции одной переменной.

Если существует конечный предел

то он называется частной производной функции f(x, y) по аргументу x и обозначается одним из символов

(4)

Аналогично определяются частное приращение z по y:

(5)

(6)

Пример 1. Найти частные производные функции

Решение. Находим частную производную по переменной "икс":

(y фиксировано);

Находим частную производную по переменной "игрек":

(x фиксировано).

Как видно, не имеет значения, в какой степени переменная, которая фиксирована: в данном случае это просто некоторое число, являющееся множителем (как в случае обычной производной) при переменной, по которой находим частную производную. Если же фиксированная переменная не умножена на переменную, по которой находим частную производную, то эта одинокая константа, безразлично, в какой степени, как и в случае обычной производной, обращается в нуль.

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн.

Пример 2. Дана функция

Найти частные производные

(по иксу) и (по игреку) и вычислить их значения в точке А (1; 2).

Решение. При фиксированном y производная первого слагаемого находится как производная степенной функции (таблица производных функций одной переменной):

.

При фиксированном x производная первого слагаемого находится как производная показательной функции, а второго – как производная постоянной:

.

Теперь вычислим значения этих частных производных в точке А (1; 2):

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн.

Пример 3. Найти частные производные функции

.

Решение. В один шаг находим

(y фиксировано и является в данном случае множителем при x, как если бы аргументом синуса было 5x: точно так же 5 оказывается перед знаком функции);

(x фиксировано и является в данном случае множителем при y).

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн.

Аналогично определяются частные производные функции трёх и более переменных.

Если каждому набору значений (x; y; . ; t) независимых переменных из множества D соответствует одно определённое значение u из множества E, то u называют функцией переменных x, y, . t и обозначают u = f(x, y, . t).

Для функций трёх и более переменных геометрической интерпретации не существует.

Частные производные функции нескольких переменных определяются и вычисляются также в предположении, что меняется только одна из независимых переменных, а другие при этом фиксированы.

Пример 4. Найти частные производные функции

.

Решение. y и z фиксированы:

,

,

Найти частные производные самостоятельно, а затем посмотреть решения

Пример 5. Найти частные производные функции .

Пример 6. Найти частные производные функции .

Пример 7. Найти частные производные функции .

Частная производная функции нескольких переменных имеет тот же механический смысл, что и производная функции одной переменной, — это скорость изменения функции относительно изменения одного из аргументов.

Пример 8. Количественная величина потока П пассажиров железных дорог может быть выражена функцией

где П – количество пассажиров, N – число жителей корреспондирующих пунктов, R – расстоянии между пунктами.

Частная производная функции П по R, равная

показывает, что уменьшение потока пассажиров обратно пропорционально квадрату расстояния между корреспондирующими пунктами при одной и той же численности жителей в пунктах.

Частная производная П по N, равная

показывает, что увеличение потока пассажиров пропорционально удвоенному числу жителей населённых пунктов при одном и том же расстоянии между пунктами.

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн.

Полный дифференциал

Произведение частной производной на приращение соответствующей независимой переменной называется частным дифференциалом. Частные дифференциалы обозначаются так:

Сумма частных дифференциалов по всем независимым переменным даёт полный дифференциал. Для функции двух независимых переменных полный дифференциал выражается равенством

(7)

Пример 9. Найти полный дифференциал функции

Решение. Результат использования формулы (7):

Функция, имеющая полный дифференциал в каждой точке некоторой области, называется дифференцируемой в этой области.

Найти полный дифференциал самостоятельно, а затем посмотреть решение

Пример 10. Найти полный дифференциал функции трёх переменных x , y , z .

Так же как и в случае функции одной переменной, из дифференцируемости функции в некоторой области следует её непрерывность в этой области, но не наоборот.

Сформулируем без доказательств достаточное условие дифференцируемости функции.

Теорема. Если функция z = f(x, y) имеет непрерывные частные производные

и

в данной области, то она дифференцируема в этой области и её дифференциал выражается формулой (7).

Можно показать, что подобно тому, как в случае функции одной переменной дифференциал функции является главной линейной частью приращения функции, так и в случае функции нескольких переменных полный дифференциал является главной, линейной относительно приращений независимых переменных частью полного приращения функции.

Для функции двух переменных полное приращение функции имеет вид

(8)

где α и β – бесконечно малые при и .

Частные производные высших порядков

Частные производные и функции f(x, y) сами являются некоторыми функциями тех же переменных и, в свою очередь, могут иметь производные по разным переменным, которые называются частными производными высших порядков.

При этом употребляются следующие обозначения:

— производные от

Эти же производные можно записать и в другой форме:

Все эти производные являются частными производными второго порядка от функции f(x, y). От них можно опять взять производные. Например,

есть частная производная третьего порядка функции f(x, y), взятая один раз по x и один раз по y.

Новых правил для составления частных производных высших порядков не требуется: производные составляются постепенно одна за другой, причём для смешанных частных производных справедлива следующая теорема.

Теорема. Если смешанные частные производные и непрерывны в некоторой открытой области, то они совпадают.

Другими словами, для непрерывной смешанной частной производной порядок дифференцирования не играет роли.

Пример 11. Найти частные производные и функции и убедиться в равенстве этих частных производных.

;

;

;

.

Как видно из решения, смешанные частные производные равны.

Пример 12. Для функции

вычислить частную производную

Решение. Первое и второе дифференцирование производим по x:

Назначение сервиса . Сервис используется для нахождения частных производных функции (см. пример). Решение производится в онлайн режиме и оформляется в формате Word .

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Правила ввода функции, заданной в явном виде

  1. Примеры
    x 2 +xy ≡ x^2+x*y .
    cos 2 (2x+y) ≡ (cos(2*x+y))^2
    ≡ (x-y)^(2/3)

Правила ввода функции, заданной в неявном виде

  1. Примеры
    ≡ x^2/(z+y)
    cos 2 (2x+zy) ≡ (cos(2*x+z*y))^2
    ≡ z+(x-y)^(2/3)

Частные производные функции нескольких переменных

Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1

Пример 2 . Найти частные производные функции z = f(x;y) в точке A(x;y).

Находим частные производные:


Найдем частные производные в точке А(1;1)


Находим вторые частные производные:


Найдем смешанные частные производные:

Пример 4
Пусть $ 3x^3z — 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение
Читайте также:  Можно ли подключить модем к ps4

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *