Спектральная плотность мощности случайного процесса. Методы вычисления СПМ. Функции спектральной плотности. Методы оценки спектральной плотности мощности сигнала Спектральная плотность мощности сигнала

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную форму, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, введенной в § 2.6 или 2.1, по всем функциям приводит к нулевому спектру процесса (при ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте . Размерность функции , являющейся отношением мощности к полосе астот, есть

Спектральную плотность случайного процесса можно найти, если известен механизм образования случайного процесса. Применительно к шумам, связанным с атомистической структурой материи и электричества, эта задача будет рассмотрена в § 7.3. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию и ограничив ее длительность конечным интервалом Т, можно применить к ней обычное преобразование Фурье и найти спектральную плотность (со). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью формулы (2.66):

Разделив эту энергию на получим среднюю мощность k-й реализации на отрезке Т

При увеличении Т энергия возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход получим

представляет собой спектральную плотность средней мощности рассматриваемой реализации.

В общем случае величина должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция характеризует весь процесс в целом.

Опуская индекс k, получаем окончательное выражение для средней мощности случайного процесса

Если рассматривается случайный процесс с ненулевым средним значением то спектральную плотность следует представить в форме

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную фор­му, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, определяемойой (1.47), по всем функциям приводит к нулевому спектру процесса (при М[х (t )]=0 ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности сред­него квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случай­ной функцией х(t) подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощ­ность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случай­ного процесса.

Спектральная плотность средней мощности представляет со­бой среднюю мощность, приходящуюся на 1 Гц при заданной частоте ω . Размерность функции W (ω) , являющейся отношением мощности к полосе частот, есть

Спектральную плотность случайного процесса можно найти, если из­вестен механизм образования случайного процесса. Применительно к шу­мам, связанным с атомистической структурой материи и электричества, эта задача будет позже. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию x k (t ) и ограничив ее дли­тельность конечным интервалом Т , можно применить к ней обычное преоб­разование Фурье и найти спектральную плотность X kT (ω). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью форму­лы:

(1.152)

Разделив эту энергию на T , получим среднюю мощность k-й реализации на отрезке Т

(1.153)

При увеличении Т энергия Э кТ возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход , получим:

г
де

представляет собой спектральную плотность средней мощности рассматри­ваемой k-й реализации.

В общем случае величина W k (ω) должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция W k (ω) характеризует весь процесс в целом. Опуcкая индекс k, получаем окончательное выражение для средней мощности случайного процесса

Для процесса с нулевым средним

(1.156)

Из определения спектральной плотности (1.155) очевидно, что W х (ω) является четной и неотрицательной функцией ω.

1.5.3 Соотношение между спектральной плотностью и ковариационной функцией случайного процесса

С одной стороны, скорость изменения х(t ) во времени определяет шири­ну спектра. С другой стороны, скорость изменения х (t) определяет ход ковариационной функции. Очевидно, что между W х (ω) и К х (τ) имеется тес­ная связь.

Теорема Винера - Хинчина утверждает, что К х (τ) и W x (ω) связаны между собой преобразованиями Фурье:

(1.157)

(1.158)

Для случайных процессов с нулевым средним аналогичные выражения имеют вид:

Из этих выражений вытекает свойство, аналогичное свойствам преобра­зований Фурье, для детерминированных сигналов: чем шире спектр случайного процесса, тем меньше интервал корреляции, и соответственно чем больше интервал корреляции, тем уже спектр процесса (см.рис.1.20).

Рис.1.20. Широкополосный и узкополосный спектры случайного процесса; границы центральной полосы: ±F 1

Большой интерес представляет белый шум, когда спектр равномерен на всех частотах .

Если в выражение 1.158 подставить W x (ω) = W 0 = const, то получим

где δ(τ) - дельта-функция.

Для белого шума с бесконечным и равномерным спектром корреляцион­ная функция равна нулю для всех значений τ, кроме τ = 0 , при котором R x (0) обращается в бесконечность. Подобный шум, имеющий игольчатую структуру с бесконечно тонкими случайными выбросами, иногда называют дельта-коррелированным процессом. Дисперсия белого шума бесконечно велика.

Вопросы для самопроверки

    Назовите основные характеристики случайного сигнала.

    Как связаны математически корреляционная функция и энергетический спектр случайного сигнала.

    Какой случайный процесс называется стационарным.

    Какой случайный процесс называется эргодическим.

    Как определяется огибающая, фаза и частота узкополосного сигнала

    Какой сигнал называется аналитическим.

Формальное определение

Пусть - сигнал, рассматриваемый на промежутке времени . Тогда энергия сигнала на данном интервале равна:

= = = ,

где - спектральная функция сигнала. При , средняя мощность (дисперсия)

.

Спектральная плотность мощности (функция плотности спектра мощности).

Спектр плотности мощности сигнала сохраняет информацию только об амплитудах спектральных составляющих. Информация о фазе теряется. Поэтому все сигналы с одинаковым спектром амплитуд и различными спектрами фаз имеют одинаковые спектры плотности мощности.

Методы оценки

Оценка СПМ может выполняться методом преобразования Фурье , предполагающего получение спектра в области частот посредством быстрого преобразования Фурье (БПФ). До изобретения алгоритмов БПФ этот метод из-за громоздкости прямого вычисления дискретного преобразования Фурье (ДПФ) практически не использовался. Предпочтение отдавалось другим методам, в частности, методу корреляционной функции (Блэкмена-Тьюки) и периодограммному методу.

См. также

Литература

  • Цифровая обработка сигналов: Справочник. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. - М.: Радио и связь, .
  • Прикладной анализ временных рядов. Основные методы. Отнес Р., Эноксон Л. - М.: Мир, .

Wikimedia Foundation . 2010 .

  • Спектральная серия
  • Спектральные серии водорода

Смотреть что такое "Спектральная плотность мощности" в других словарях:

    Спектральная плотность мощности шума прибора СВЧ - 221. Спектральная плотность мощности шума прибора СВЧ Спектральная плотность мощности шума Noise spectral power density Pш Мощность шума прибора СВЧ в полосе 1 Гц Источник: ГОСТ 23769 79: Приборы электронные и устройства защитные СВЧ. Термины,… …

    Спектральная плотность мощности шумового диода - 140. Спектральная плотность мощности шумового диода G Отношение среднего квадратического значения мощности шумового диода к заданному диапазону частот Источник: ГОСТ 25529 82: Диоды полупроводниковые. Термины, определения и буквенные обозначения… … Словарь-справочник терминов нормативно-технической документации

    спектральная плотность мощности шума - spektrinis triukšmo galios tankis statusas T sritis radioelektronika atitikmenys: angl. noise spectral power density vok. Spektralleistungsdichte des Rauschens, f rus. спектральная плотность мощности шума, f pranc. densité spectrale de puissance… … Radioelektronikos terminų žodynas

    Spektrinis spinduliuotės galios tankis statusas T sritis Standartizacija ir metrologija apibrėžtis Pasirinktosios spektro dalies vienetinio dažnio, bangos ilgio (ar kito su jais susijusio dydžio) intervalo vidutinė spinduliuotės galios vertė.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    спектральная плотность мощности излучения - spektrinis spinduliuotės galios tankis statusas T sritis fizika atitikmenys: angl. radiation power spectral density vok. spektrale Strahlungsleistungsdichte, f rus. спектральная плотность мощности излучения, f pranc. densité spectrale de… … Fizikos terminų žodynas

    относительная спектральная плотность мощности шума прибора СВЧ - Ндп. энергетический спектр шума энергетический спектр флуктуаций спектральная плотность шума ΔPш Отношение спектральной плотности мощности шума прибора СВЧ к выходной мощности в полосе 1 Гц. [ГОСТ 23769 79] Недопустимые, нерекомендуемые… … Справочник технического переводчика

    Относительная спектральная плотность мощности шума прибора СВЧ - 222. Относительная спектральная плотность мощности шума прибора СВЧ Ндп. Энергетический спектр шума Энергетический спектр флуктуации Спектральная плотность шума Relative noise spectral power density ΔPш Отношение спектральной плотности мощности… … Словарь-справочник терминов нормативно-технической документации

    Спектральная плотность - В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье. Если процесс имеет… … Википедия

    Спектральная плотность излучения - характеристика спектра излучения, равная отношению интенсивности (плотности потока) излучения в узком частотном интервале к величине этого интервала. Является применением понятия спектральной плотности мощности к электромагнитному излучению.… … Википедия

    Спектральная плотность энергии (мощности) лазерного излучения - 5. Спектральная плотность энергии (мощности) лазерного излучения* Спектральная плотность энергии (мощности) СПЭ (СПМ) Wλ, Wv, Pλ, Pv Источник … Словарь-справочник терминов нормативно-технической документации

1) По своему физическому смыслу спектр мощности вещественен и неотрицателен:

Поэтому по спектру мощности принципиально невозможно восстановить какую - либо отдельно взятую реализацию случайного процесса.

2) Поскольку чётная функция аргумента , то соответствующий спектр мощности представляет собой чётную функцию частоты . Отсюда следует, что пару преобразований Фурье (6.14), (6.15) можно записать, используя интегралы в полубесконечных пределах:

(6.17)

(6.18)

3. Целесообразно ввести так называемый односторонний спектр мощности случайного процесса, определив его следующим образом:

(6.19)

Функция позволяет вычислить дисперсию стационарного случайного процесса путём интегрирования по положительным (физическим частотам):

(6.20)

4. В технических расчётах часто вводят односторонний спектр мощности N(f), представляющий собой среднюю мощность случайного процесса, приходящуюся на интервал частот шириной в 1 Гц:

(6.21)

При этом, как легко видеть

Весьма важным параметром случайных процессов является интервал корреляции. Случайные процессы, как правило, обладают следующими свойствами: их функция корреляции стремится к нулю с увеличением временного сдвига . Чем быстрее убывает функция , тем меньше оказывается статистическая связь между мгновенными значениями случайного сигнала в два несовпадающих момента времени.

Числовой характеристикой, служащей для оценки «скорости изменения» реализации случайного процесса, является интервал корреляции определяемый выражением:

(6.22)

Если известна информация о поведении какой-либо реализации «в прошлом», то возможен вероятностный прогноз случайного процесса на время порядка .

Ещё одним существенным параметром для случайного процесса является эффективная ширина спектра. Пусть исследуемый случайный процесс характеризуется функцией - односторонним спектром мощности, причём - экстремальное значение этой функции. Заменим мысленно данный случайный процесс другим процессом, у которого спектральная плотность мощности постоянна и равна в пределах эффективной полосы частот , выбираемой из условия равенства средних мощностей обоих процессов:

Отсюда получается формула для эффективной ширины спектра:

(6.23)

Вне пределов указанной полосы спектральная плотность случайного процесса считается равной 0.

Этой числовой характеристикой часто пользуются для инженерного расчёта дисперсии шумового сигнала: .



Если реализации случайного процесса имеют размерность напряжения (В), то относительный спектр мощности N имеет размерность .

Белый шум и его свойства. Гауссовский случайный процесс.

А) Белый шум.

стационарный случайный процесс с постоянной на всех частотах спектральной плотностью мощности называется белым шумом.

(7.1)

По теореме Винера-Хинчина функция корреляции белого шума:

равна нулю всюду кроме точки . Средняя мощность (дисперсия) белого шума неограниченно велика.

Белый шум является дельта-коррелированным процессом. Некоррелированность мгновенных значений такого случайного сигнала означает бесконечно большую скорость изменения их во времени – как бы мал ни был интервал , сигнал за это время может измениться на любую наперёд заданную величину.

Белый шум является абстрактной математической моделью и отвечающий ему физический процесс, безусловно, не существует в природе. Однако это не мешает приближённо заменять реальные достаточно широкополосные случайные процессы белым шумом в тех случаях, когда полоса пропускания цепи, на которую воздействует случайный сигнал, оказывается существенно уже эффективной ширины спектра шума.

Публикации по теме