Линейная независимость строк матрицы. Линейная зависимость и независимость строк матрицы. Обратная матрица, алгоритм вычисления обратной матрицы

Понятия линейной зависимости и линейной независимости определяются для строк и столбцов одинаково. Поэтому свойства, связанные с этими понятиями, сформулированные для столбцов, разумеется, справедливы и для строк.

1. Если в систему столбцов входит нулевой столбец, то она линейно зависима.

2. Если в системе столбцов имеется два равных столбца, то она линейно зависима.

3. Если в системе столбцов имеется два пропорциональных столбца , то она линейно зависима.

4. Система из столбцов линейно зависима тогда и только тогда, когда хотя бы один из столбцов есть линейная комбинация остальных.

5. Любые столбцы, входящие в линейно независимую систему, образуют линейно независимую подсистему.

6. Система столбцов, содержащая линейно зависимую подсистему, линейно зависима.

7. Если система столбцов - линейно независима, а после присоединения к ней столбца - оказывается линейно зависимой, то столбец можно разложить по столбцам , и притом единственным образом, т.е. коэффициенты разложения находятся однозначно.

Докажем, например, последнее свойство. Так как система столбцов линейно зависима, то существуют числа не все равные 0, что

В этом равенстве . В самом деле, если , то

Значит, нетривиальная линейная комбинация столбцов равна нулевому столбцу, что противоречит линейной независимости системы . Следовательно, и тогда , т.е. столбец есть линейная комбинация столбцов . Осталось показать единственность такого представления. Предположим противное. Пусть имеется два разложения и , причем не все коэффициенты разложений соответственно равны между собой (например, ). Тогда из равенства

Получаем (\alpha_1-\beta_1)A_1+\ldots+(\alpha_k-\beta_k)A_k=o

последовательно, линейная комбинация столбцов равна нулевому столбцу. Так как не все ее коэффициенты равны нулю (по крайней мере ), то эта комбинация нетривиальная, что противоречит условию линейной независимости столбцов . Полученное противоречие подтверждает единственность разложения.

Пример 3.2. Доказать, что два ненулевых столбца и линейно зависимы тогда и только тогда, когда они пропорциональны, т.е. .

Решение. В самом деле, если столбцы и линейно зависимы, то существуют такие числа , не равные нулю одновременно, что . Причем в этом равенстве . Действительно, предположив, что , получим противоречие , поскольку и столбец - ненулевой. Значит, . Поэтому найдется число такое, что . Необходимость доказана.

Наоборот, если , то . Получили нетривиальную линейную комбинацию столбцов, равную нулевому столбцу. Значит, столбцы линейно зависимы.

Пример 3.3. Рассмотреть всевозможные системы, образованные из столбцов

Исследовать каждую систему на линейную зависимость.
Решение. Рассмотрим пять систем, содержащих по одному столбцу. Согласно п.1 замечаний 3.1: системы , линейно независимы, а система, состоящая из одного нулевого столбца , линейно зависима.

Рассмотрим системы, содержащие по два столбца:

– каждая из четырех систем и линейно зависима, так как содержит нулевой столбец (свойство 1);

– система линейно зависима, так как столбцы пропорциональны (свойство 3): ;

– каждая из пяти систем и линейно независима, так как столбцы непропорциональные (см. утверждение примера 3.2).

Рассмотрим системы, содержащие три столбца:

– каждая из шести систем и линейно зависима, так как содержит нулевой столбец (свойство 1);

– системы линейно зависимы, так как содержат линейно зависимую подсистему (свойство 6);

– системы и линейно зависимы, так как последний столбец линейно выражается через остальные (свойство 4): и соответственно.

Наконец, системы из четырех или из пяти столбцов линейно зависимы (по свойству 6).

Ранг матрицы

В этом разделе рассмотрим еще одну важную числовую характиристику матрицы, связанную с тем, насколько ее строки (столбцы) зависят друг от друга.

Определение 14.10 Пусть дана матрица размеров и число , не превосходящее наименьшего из чисел и : . Выберем произвольно строк матрицы и столбцов (номера строк могут отличаться от номеров столбцов). Определитель матрицы, составленной из элементов, стоящих на пересечении выбранных строк и столбцов, называется минором порядка матрицы .

Пример 14.9 Пусть .

Минором первого порядка является любой элемент матрицы. Так 2, , -- миноры первого порядка.

Миноры второго порядка:

1. возьмем строки 1, 2, столбцы 1, 2, получим минор ;

2. возьмем строки 1, 3, столбцы 2, 4, получим минор ;

3. возьмем строки 2, 3, столбцы 1, 4, получим минор

Миноры третьего порядка:

строки здесь можно выбрать только одним способом,

1. возьмем столбцы 1, 3, 4, получим минор ;

2. возьмем столбцы 1, 2, 3, получим минор .

Предложение 14.23 Если все миноры матрицы порядка равны нулю, то все миноры порядка , если такие существуют, тоже равны нулю.

Доказательство . Возьмем произвольный минор порядка . Это определитель матрицы порядка . Разложим его по первой строке. Тогда в каждом слагаемом разложения один из множителей будет являться минором порядка исходной матрицы. По условию миноры порядка равны нулю. Поэтому и минор порядка будет равен нулю.

Определение 14.11 Рангом матрицы называется наибольший из порядков миноров матрицы , отличных от нуля. Ранг нулевой матрицы считается равным нулю.

Единое, стандартное, обозначение ранга матрицы отсутствует. Следуя учебнику , мы будем обозначать его .

Пример 14.10 Матрица примера 14.9 имеет ранг 3, так как есть минор третьего порядка, отличный от нуля, а миноров четвертого порядка нет.

Ранг матрицы равен 1, так как есть ненулевой минор первого порядка (элемент матрицы ), а все миноры второго порядка равны нулю.

Ранг невырожденной квадратной матрицы порядка равен , так как ее определитель является минором порядка и у невырожденной матрицы отличен от нуля.

Предложение 14.24 При транспонировании матрицы ее ранг не меняется, то есть .

Доказательство . Транспонированный минор исходной матрицы будет являться минором транспонированной матрицы , и наоборот, любой минор является транспонированным минором исходной матрицы . При транспонировании определитель (минор) не меняется (предложение 14.6). Поэтому если все миноры порядка в исходной матрице равны нулю, то все миноры того же порядка в тоже равны нулю. Если же минор порядка в исходной матрице отличен от нуля, то в есть минор того же порядка, отличный от нуля. Следовательно, .

Определение 14.12 Пусть ранг матрицы равен . Тогда любой минор порядка , отличный от нуля, называется базисным минором.

Пример 14.11 Пусть . Определитель матрицы равен нулю, так как третья строка равна сумме первых двух. Минор второго порядка, расположенный в первых двух строках и первых двух столбцах, равен . Следовательно, ранг матрицы равен двум, и рассмотренный минор является базисным.

Базисным минором является также минор, расположенный, скажем, в первой и третьей строках, первом и третьем столбцах: . Базисным будет минор во второй и третьей строках, первом и третьем столбцах: .

Минор в первой и второй строках, втором и третьем столбцах равен нулю и поэтому не будет базисным. Читатель может самостоятельно проверить, какие еще миноры второго порядка будут базисными, а какие нет.

Так как столбцы (строки) матрицы можно складывать, умножать на числа, образовывать линейные комбинации, то можно ввести определения линейной зависимости и линейной независимости системы столбцов (строк) матрицы. Эти определения аналогичны таким же определениям 10.14, 10.15 для векторов.

Определение 14.13 Система столбцов (строк) называется линейно зависимой, если существует такой набор коэффициентов, из которых хотя бы один отличен от нуля, что линейная комбинация столбцов (строк) с этими коэффициентами будет равна нулю.

Определение 14.14 Система столбцов (строк) является линейно независимой, если из равенства нулю линейной комбинации этих столбцов (строк) следует, что все коэффициенты этой линейной комбинации равны нулю.

Верно также следующеее предложение, аналогичное предложению 10.6.

Предложение 14.25 Система столбцов (строк) является линейно зависимой тогда и только тогда, когда один из столбцов (одна из строк) является линейной комбинацией других столбцов (строк) этой системы.

Сформулируем теорему, которая называется теорема о базисном миноре .

Теорема 14.2 Любой столбец матрицы является линейной комбинацией столбцов, проходящих через базисный минор.

Доказательство можно найти в учебниках по линейной алгебре, например, в , .

Предложение 14.26 Ранг матрицы равен максимальному числу ее столбцов, образующих линейно независимую систему.

Доказательство . Пусть ранг матрицы равен . Возьмем столбцы, проходящие через базисный минор. Предположим, что эти столбцы образуют линейно зависимую систему. Тогда один из столбцов является линейной комбинацией других. Поэтому в базисном миноре один столбец будет линейной комбинацией других столбцов. По предложениям 14.15 и 14.18 этот базисный минор должен быть равен нулю, что противоречит определению базисного минора. Следовательно, предположение о том, что столбцы, проходящие через базисный минор, линейно зависимы, не верно. Итак, максимальное число столбцов, образующих линейно независимую систему, больше либо равно .

Предположим, что столбцов образуют линейно независимую систему. Составим из них матрицу . Все миноры матрицы являются минорами матрицы . Поэтому базисный минор матрицы имеет порядок не больше . По теореме о базисном миноре, столбец, не проходящий через базисный минор матрицы , является линейной комбинацией столбцов, проходящих через базисный минор, то есть столбцы матрицы образуют линейно зависимую систему. Это противоречит выбору столбцов, образующих матрицу . Следовательно, максимальное число столбцов, образующих линейно независимую систему, не может быть больше . Значит, оно равно , что и утверждалось.

Предложение 14.27 Ранг матрицы равен максимальному числу ее строк, образующих линейно независимую систему.

Доказательство . По предложению 14.24 ранг матрицы при транспонировании не меняется. Строки матрицы становятся ее столбцами. Максимальное число новых столбцов транспонированной матрицы, (бывших строк исходной) образующих линейно независимую систему, равно рангу матрицы.

Предложение 14.28 Если определитель матрицы равен нулю, то один из его столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

Доказательство . Пусть порядок матрицы равен . Определитель является единственным минором квадратной матрицы, имеющим порядок . Так как он равен нулю, то . Следовательно, система из столбцов (строк) является линейно зависимой, то есть один из столбцов (одна из строк) является линейной комбинацией остальных.

Результаты предложений 14.15, 14.18 и 14.28 дают следующую теорему.

Теорема 14.3 Определитель матрицы равен нулю тогда и только тогда, когда один из ее столбцов (одна из строк) является линейной комбинацией остальных столбцов (строк).

Нахождение ранга матрицы с помощью вычисления всех ее миноров требует слишком большой вычислительной работы. (Читатель может проверить, что в квадратной матрице четвертого порядка 36 миноров второго порядка.) Поэтому для нахождения ранга применяется другой алгоритм. Для его описания потребуется ряд дополнительных сведений.

Определение 14.15 Назовем элементарными преобразованиями матрицследующие действия над ними:

1) перестановка строк или столбцов;
2) умножение строки или столбца на число отличное от нуля;
3) добавление к одной из строк другой строки, умноженной на число или добавление к одному из столбцов другого столбца, умноженного на число.

Предложение 14.29 При элементарных преобразованиях ранг матрицы не меняется.

Доказательство . Пусть ранг матрицы равен , -- матрица, получившаяся в результате выполнения элементарного преобразования.

Рассмотрим перестановку строк. Пусть -- минор матрицы , тогда в матрице есть минор , который или совпадает с , или отличается от него перестановкой строк. И наоборот, любому минору матрицы можно сопоставить минор матрицы или совпадающий с , или отличающийся от него порядком строк. Поэтому из того, что в матрице все миноры порядка равны нулю, следует, что в матрице тоже все миноры этого порядка равны нулю. И так как в матрице есть минор порядка , отличный от нуля, то и в матрице тоже есть минор порядка , отличный от нуля, то есть .

Рассмотрим умножение строки на число , отличное от нуля. Минору из матрицы соответствует минор из матрицы или совпадающий с , или отличающийся от него только одной строкой, которая получается из строки минора умножением на число, отличное от нуля. В последнем случае . Во всех случаях или и одновременно равны нулю, или одновременно отличны от нуля. Следовательно, .

  • Обратная матрица, алгоритм вычисления обратной матрицы.
  • Система линейных алгебраических уравнений, основные свойства слау, однородность и неоднородность, совместность и несовместность, определенность слау, матричная форма записи слау и ее решения
  • Квадратные системы, метод Крамера
  • Элементарные преобразования слау. Метод Гаусса исследования слау.
  • Критерий совместности слау, теорема Кронекера-Капелли, геометрическая интерпретация на примере 2-х уравнений с 2-мя неизвестными.
  • Однородные слау. Свойство решений, фср, теорема об общем решении однородной системы. Критерий существования нетривиального решения.
  • Неоднородные слау. Теорема о структуре решения неоднородной слау. Алгоритм решения неоднородной слау.
  • Определение линейного (векторного) пространства. Примеры лп.
  • Линейно зависимые и линейно независимые системы векторов. Критерий линейной зависимости.
  • Достаточные условия линейной зависимости и линейной независимости систем векторов лп. Примеры линейно независимых систем в пространствах строк, многочленов, матриц.
  • Изоморфизм лп. Критерий изоморфности лп.
  • Подпространство лп и линейные оболочки систем векторов. Размерность линейной оболочки.
  • Теорема о пополнении базиса
  • Пересечение и сумма подпространств, прямая сумма подпространств. Теорема о размерности суммы подпространств.
  • Подпространство решений однородной слау, его размерность и базис. Выражение общего решения однородной слау через фср.
  • Матрица перехода от одного базиса лп к другому и ее свойства. Преобразование координат вектора при переходе к другому базису.
  • Определение и примеры линейных операторов, линейные отображения и линейные преобразования
  • Матрица линейного оператора, нахождение координат образа вектора
  • Действия с линейными операторами. Линейное пространство ло
  • Теорема об изоморфности множества линейных преобразований множеству квадратных матриц
  • Матрица произведения линейных преобразований. Примеры нахождение матриц операторов.
  • Определение и свойства обратного оператора, его матрица.
  • Критерий обратимости линейного оператора. Примеры обратимых и необратимых операторов.
  • Преобразование матрицы линейного оператора при переходе к другому базису.
  • Определитель и характеристический многочлен линейного оператора, их инвариантность по отношению к преобразованиям базиса.
  • Ядро и образ линейного оператора. Теорема о сумме размерностей ядра и образа. Нахождение ядра и образа линейного оператора в фиксированном базисе. Ранг и дефект линейного оператора.
  • Теорема инвариантности ядра и образа ло а относительно перестановочного с ним ло в
  • Алгебраическая и геометрическая кратности собственных значений и их взаимосвязь.
  • Критерий диагонализируемости матрицы линейного оператора, достаточные условия диагонализируемости линейного оператора.
  • Теорема Гамильтона-Кэли
  • Линейная алгебра

    Теория слау

    1. Матрицы, действия с матрицами, обратная матрица. Матричные уравнения и их решения.

    Матрица – прямоугольная таблица произвольных чисел, расположенных в определенном порядке, размером m*n (строк на столбцы). Элементы матрицы обозначаются, где i – номер строки, аj – номер столбца.

    Сложение (вычитание) матриц определены только для одноразмерных матриц. Сумма(разность) матриц – матрица, элементы которой являются соответственно сумма(разность) элементов исходных матриц.

    Умножение (деление) на число – умножение (деление) каждого элемента матрицы на это число.

    Умножение матриц определено только для матриц, число столбцов первой из которых равно числу строк второй.

    Умножение матриц – матрица, элементы которых задаются формулами:

    Транспонирование матрицы – такая матрицаB, строки (столбцы) которой являются столбцами (строками) в исходной матрицеA. Обозначается

    Обратная матрица

    Матричные уравнения – уравнения видаA*X=B есть произведение матриц, ответом на данное уравнение является матрицаX, которая находится с помощью правил:

    1. Линейная зависимость и независимость столбцов (строк) матрицы. Критерий линейной зависимости, достаточные условия линейной зависимости столбцов (строк) матрицы.

    Система строк (столбцов) называется линейно независимой , если линейная комбинация тривиальна (равенство выполняется только приa1…n=0), гдеA1…n – столбцы(строки), аa1…n – коэффициенты разложения.

    Критерий : для того, что бы система векторов была линейно зависма, необходимо и достаточно, чтобы хотя бы один из векторов системы линейно выражался через остальные векторы системы.

    Достаточное условие :

    1. Определители матрицы и их свойства

    Определитель матрицы (детерминанта) – такое число, которое для квадратной матрицыA может быть вычислено по элементам матрицы по формуле:

    , где - дополнительный минор элемента

    Свойства:

    1. Обратная матрица, алгоритм вычисления обратной матрицы.

    Обратная матрица – такая квадратная матрицаX,которая вместе с квадратной матрицей A того же порядка, удовлевторяет условию:, гдеE – единичная матрица, того же порядка что иA. Любая квадратная матрица с определителем, не равным нулю имеет 1 обратную матрицу. Находится с помощью метода элементарных преобразований и с помощью формулы:

      Понятие ранга матрицы. Теорема о базисном миноре. Критерий равенства нулю определителя матрицы. Элементарные преобразования матриц. Вычисления ранга методом элементарных преобразований. Вычисление обратной матрицы методом элементарных преобразований.

    Ранг матрицы – порядок базисного минора (rg A)

    Базисный минор – минор порядкаr не равный нулю, такой что все миноры порядка r+1 и выше равны нулю или не существуют.

    Теорема о базисном миноре - В произвольной матрице А каждый столбец {строка) является линейной комбинацией столбцов (строк), в которых расположен базисный минор.

    Доказательство: Пусть в матрицеAразмеров m*n базисный минор расположен в первых r строках и первых r столбцах. Рассмотрим определитель, который получен приписыванием к базисному минору матрицы А соответствующих элементов s-й строки и k-го столбца.

    Отметим, что при любых иэтот определитель равен нулю. Еслиили, то определительD содержит две одинаковых строки или два одинаковых столбца. Если жеи, то определитель D равен нулю, так как является минором (r+λ)-ro порядка. Раскладывая определитель по последней строке, получаем:, где- алгебраические дополнения элементов последней строки. Заметим, что, так как это базисный минор. Поэтому, гдеЗаписывая последнее равенство для, получаем, т.е. k-й столбец (при любом) есть линейная комбинация столбцов базисного минора, что и требовалось доказать.

    Критерий d etA=0 – Определитель равен нулю тогда и только тогда, когда его строки(столбцы) линейно зависимы.

    Элементарные преобразования :

    1) умножение строки на число, отличное от нуля;

    2) прибавление к элементам одной строки элементов другой строки;

    3) перестановка строк;

    4) вычеркивание одной из одинаковых строк (столбцов);

    5) транспонирование;

    Вычисление ранга – Из теоремы о базисном миноре следует, что ранг матрицы А равен максимальному числу линейно независимых строк(столбцов в матрице), следовательно задача элементарных преобразований найти все линейно независимые строки (столбцы).

    Вычисление обратной матрицы ­ - Преобразования могут быть реализованы умножением на матрицу A некоторой матрицы T, которая представляет собой произведение соответствующих элементарных матриц: TA = E.

    Это уравнение означает, что матрица преобразования T представляет собой обратную матрицу для матрицы . Тогдаи, следовательно,

    Рассмотрим произвольную, необязательно квадратную, матрицу А размера mxn.

    Ранг матрицы.

    Понятие ранга матрицы связано с понятием линейной зависимости (независимости) строк (столбцов) матрицы. Рассмотрим это понятие для строк. Для столбцов – аналогично.

    Обозначим стоки матрицы А:

    е 1 =(а 11 ,а 12 ,…,а 1n); е 2 =(а 21 ,а 22 ,…,а 2n);…, е m =(а m1 ,а m2 ,…,а mn)

    e k =e s если a kj =a sj , j=1,2,…,n

    Арифметические операции над строками матрицы (сложение, умножение на число) вводятся как операции, проводимые поэлементно: λе k =(λа k1 ,λа k2 ,…,λа kn);

    e k +е s =[(а k1 +a s1),(a k2 +a s2),…,(а kn +a sn)].

    Строка е называется линейной комбинацией строк е 1 , е 2 ,…,е k , если она равна сумме произведений этих строк на произвольные действительные числа:

    е=λ 1 е 1 +λ 2 е 2 +…+λ k е k

    Строки е 1 , е 2 ,…,е m называются линейно зависимыми , если существуют действительные числа λ 1 ,λ 2 ,…,λ m , не все равные нулю, что линейная комбинация этих строк равна нулевой строке: λ 1 е 1 +λ 2 е 2 +…+λ m е m =0 ,где0 =(0,0,…,0) (1)

    Если линейная комбинация равна нулю тогда и только тогда, когда все коэффициенты λ i равны нулю (λ 1 =λ 2 =…=λ m =0), то строки е 1 , е 2 ,…,е m называются линейно независимыми.

    Теорема 1 . Для того, чтобы строки е 1 ,е 2 ,…,е m были линейно зависимы, необходимо и достаточно, чтобы одна из этих строк была линейной комбинацией остальных строк.

    Доказательство . Необходимость . Пусть строки е 1 , е 2 ,…,е m линейно зависимы. Пусть, для определенности в (1) λ m ≠0, тогда

    Т.о. строка е m является линейной комбинацией остальных строк. Ч.т.д.

    Достаточность . Пусть одна из строк, например е m , является линейной комбинацией остальных строк. Тогда найдутся числа такие, что выполняется равенство , которое можно переписать в виде ,

    где хотя бы 1 из коэффициентов, (-1), не равен нулю. Т.е. строки линейно зависимы. Ч.т.д.

    Определение. Минором k-го порядка матрицы А размера mxn называется определитель k-го порядка с элементами, лежащими на пересечении любых k строк и любых k столбцов матрицы А. (k≤min(m,n)). .

    Пример. , миноры 1-го порядка: =, =;

    миноры 2-го порядка: , 3-го порядка

    У матрицы 3-го порядка 9 миноров 1-го порядка, 9 миноров 2-го порядка и 1 минор 3-го порядка (определитель этой матрицы).

    Определение. Рангом матрицы А называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение - rg A или r(A).

    Свойства ранга матрицы .

    1) ранг матрицы A nxm не превосходит меньшего из ее размеров, т.е.

    r(A)≤min(m,n).

    2) r(A)=0 когда все элементы матрицы равны 0, т.е. А=0.

    3) Для квадратной матрицы А n –го порядка r(A)=n , когда А невырожденная.



    (Ранг диагональной матрицы равен количеству ее ненулевых диагональных элементов).

    4) Если ранг матрицы равен r, то матрица имеет хотя бы один минор порядка r, не равный нулю, а все миноры больших порядков равны нулю.

    Для рангов матрицы справедливы следующие соотношения:

    2) r(A+B)≤r(A)+r(B); 3) r(AB)≤min{r(A),r(B)};

    3) r(A+B)≥│r(A)-r(B)│; 4) r(A T A)=r(A);

    5) r(AB)=r(A), если В - квадратная невырожденная матрица.

    6) r(AB)≥r(A)+r(B)-n, где n-число столбцов матрицы А или строк матрицы В.

    Определение. Ненулевой минор порядка r(A) называется базисным минором . (У матрицы А может быть несколько базисных миноров). Строки и столбцы, на пересечении которых стоит базисный минор, называются соответственно базисными строками и базисными столбцами .

    Теорема 2 (о базисном миноре). Базисные строки (столбцы) линейно независимы. Любая строка (любой столбец) матрица А является линейной комбинацией базисных строк (столбцов).

    Доказательство . (Для строк). Если бы базисные строки были линейно зависимы, то по теореме (1) одна из этих строк была бы линейной комбинацией других базисных строк, тогда, не изменяя величины базисного минора, можно вычесть из этой строки указанную линейную комбинацию и получить нулевую строку, а это противоречит тому, что базисный минор отличен от нуля. Т.о. базисные строки линейно независимы.

    Докажем, что любая строка матрицы А является линейной комбинацией базисных строк. Т.к. при произвольных переменах строк (столбцов) определитель сохраняет свойство равенства нулю, то, не ограничивая общности, можно считать, что базисный минор находится в верхнем левом углу матрицы

    А=, т.е. расположен на первых r строках и первых r столбцах. Пусть 1£j£n, 1£i£m. Покажем, что определитель (r+1)-го порядка

    Если j£r или i£r, то этот определитель равен нулю, т.к. у него будет два одинаковых столбца или две одинаковых строки.

    Если же j>r и i>r, то этот определитель является минором (r+1)-го порядка матрицы А. Т.к. ранг матрицы равен r, значит любой минор большего порядка равен 0.

    Раскладывая его по элементам последнего (добавленного) столбца, получаем

    a 1j A 1j +a 2j A 2j +…+a rj A rj +a ij A ij =0, где последнее алгебраическое дополнение A ij совпадает с базисным минором М r и поэтому A ij = М r ≠0.

    Разделив последнее равенство на A ij , можем выразить элемент a ij , как линейную комбинацию: , где .

    Зафиксируем значение i (i>r) и получаем, что для любого j (j=1,2,…,n) элементы i-й строки e i линейно выражаются через элементы строк е 1 , е 2 ,…,е r , т.е. i-я строка является линейной комбинацией базисных строк: . Ч.т.д.

    Теорема 3. (необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель n-го порядка D был равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

    Доказательство (с.40) . Необходимость . Если определитель n-го порядка D равен нулю, то базисный минор его матрицы имеет порядок r

    Т.о., одна строка является линейной комбинацией других остальных. Тогда по теореме 1 строки определителя линейно зависимы.

    Достаточность . Если строки D линейно зависимы, то по теореме 1 одна строка А i является линейной комбинацией остальных строк. Вычитая из строки А i указанную линейную комбинацию, не изменив величины D, получим нулевую строку. Следовательно, по свойствам определителей, D=0. ч.т.д.

    Теорема 4. При элементарных преобразованиях ранг матрицы не меняется.

    Доказательство . Как было показано при рассмотрении свойств определителей, при преобразованиях квадратных матриц их определители либо не изменяются, либо умножаются на ненулевое число, либо меняют знак. При этом наивысший порядок отличных от нуля миноров исходной матрицы сохраняется, т.е. ранг матрицы не изменяется. Ч.т.д.

    Если r(A)=r(B), то А и В –эквивалентные: А~В.

    Теорема 5. При помощи элементарных преобразований можно привести матрицу к ступенчатому виду. Матрица называется ступенчатой, если она имеет вид:

    А=, где a ii ≠0, i=1,2,…,r; r≤k.

    Условия r≤k всегда можно достигнуть транспонированием.

    Теорема 6. Ранг ступенчатой матрицы равен количеству ее ненулевых строк.

    Т.е. Ранг ступенчатой матрицы равен r, т.к. есть отличный от нуля минор порядка r:

    где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

    или , .

    Из (3.3.1) вытекает, что

    (3.3.2)

    где – нулевая строка.

    Определение. Строки матрицы А линейно зависимы, если существуют такие числа , не все равные нулю одновременно, что

    (3.3.3)

    Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

    Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

    Пусть, например, в (3.3.3) , тогда .

    Определение. Пусть в матрице А выделен некоторый минор r -го порядка и пусть минор (r +1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

    Теперь докажем важную лемму.

    Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

    Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r -го порядка стоит в левом верхнем углу матрицы А=:

    .

    Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

    Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор (r +1)-го порядка путем добавления к минору k -ой строки () и l -го столбца ():

    .

    Полученный минор равен нулю при всех k и l . Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

    Разложим минор по элементам последнего l -го столбца:

    (3.3.4)

    где - алгебраические дополнения к элементам . Алгебраические дополнение есть минор матрицы А, поэтому . Разделим (3.3.4) на и выразим через :

    (3.3.5)

    где , .

    Полагая , получим:

    (3.3.6)

    Выражение (3.3.6) означает, что k -я строка матрицы А линейно выражается через первые r строк.

    Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

    Следствие I . Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

    Следствие II . Определитель n -го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

    Докажем необходимость. Пусть задана квадратная матрица n -го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n , т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

    Докажем еще одну теорему о ранге матрицы.

    Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

    Доказательство. Пусть ранг матрицы А= равен r . Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r +1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r , отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r . Все доказанное для строк справедливо и для столбцов.

    В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

    На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

    Следующая теорема позволяет, однако, внести в этот значительные упрощения.

    Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r .

    Доказательство. Достаточно показать, что любая подсистема строк матрицы при S > r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

    Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

    (3.3.7)

    Рассмотрим матрицу К из коэффициентов линейных выражений (3.3.7):

    .

    Строки этой матрицы обозначим через . Они будут линейно зависимы, так как ранг матрицы К, т.е. максимальное число ее линейно независимых строк, не превышает r < S . Поэтому существуют такие числа , не все равны нулю, что

    Перейдем к равенству компонент

    (3.3.8)

    Теперь рассмотрим следующую линейную комбинацию:

    или

    Публикации по теме