Понятие о ранге матрицы. Найти ранг матрицы: способы и примеры Как быстро определить ранг матрицы

Рангом матрицы называется наибольший порядок ее миноров, отличных от нуля. Ранг матрицы обозначают или .

Если все миноры порядка данной матрицы равны нулю, то все миноры более высокого порядка данной матрицы также равны нулю. Это следует из определения определителя. Отсюда вытекает алгоритм нахождения ранга матрицы.

Если все миноры первого порядка (элементы матрицы ) равны нулю, то . Если хотя бы один из миноров первого порядка отличен от нуля, а все миноры второго порядка равны нулю, то . Причем, достаточно просмотреть только те миноры второго порядка, которые окаймляют ненулевой минор первого порядка. Если найдется минор второго порядка отличный от нуля, исследуют миноры третьего порядка, окаймляющие ненулевой минор второго порядка. Так продолжают до тех пор, пока не придут к одному из двух случаев: либо все миноры порядка , окаймляющие ненулевой минор -го порядка равны нулю, либо таких миноров нет. Тогда .

Пример 10. Вычислить ранг матрицы .

Минор первого порядка (элемент ) отличен от нуля. Окаймляющий его минор тоже не равен нулю.

Все эти миноры равны нулю, значит .

Приведенный алгоритм нахождения ранга матрицы не всегда удобен, поскольку связан с вычислением большого числа определителей. Наиболее удобно пользоваться при вычислении ранга матрицы элементарными преобразованиями, при помощи которых матрица приводится к столь простому виду, что очевидно, чему равен ее ранг.

Элементарными преобразованиями матрицы называют следующие преобразования:

Ø умножение какой-нибудь строки (столбца) матрица на число, отличное от нуля;

Ø прибавление к одной строке (столбцу) другой строки (столбца), умноженной на произвольное число.

Полужордановым преобразованием строк матрицы:

с разрешающим элементом называется следующая совокупность преобразований со строками матрицы:

Ø к первой строке прибавить ю, умноженную на число и т.д.;

Ø к последней строке прибавить ю, умноженную на число .

Полужордановым преобразованием столбцов матрицы с разрешающим элементом называется следующая совокупность преобразований со столбцами матрицы:

Ø к первму столбцу прибавить й, умноженный на число и т.д.;

Ø к последнему столбцу прибавить й, умноженный на число .

После выполнения этих преобразований получается матрица:

Полужорданово преобразование строк или столбцов квадратной матрицы не изменяет ее определителя.

Элементарные преобразования матрицы не изменяют ее ранга. Покажем на пример, как вычислить ранг матрицы, пользуясь элементарными преобразованиями. строк (столбцов) линейно зависимы.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

Определение 15 . 6 Пусть -- фундаментальная система решений однородной системы . Тогда выражение

где -- произвольные числа, будем называть общим решением системы .

Из определения фундаментальной системы решений следует, что любое решение однородной системы может быть получено из общего решения при некоторых значениях . И наоборот, при любых фиксированных числовых значениях из общего решения получим решение однородной системы.

Как находить фундаментальную систему решений мы увидим позже, в разделе "Алгоритм нахождения решений произвольной системы линейных уравнений (метод Гаусса)" .

Теорема 15 . 3 Пусть -- фундаментальная система решений однородной системы . Тогда , где -- число неизвестных в системе.

Теорема (о линейном решении однородных систем). Пусть - решения однородной системы (1), - произвольные константы. Тогда также является решением рассматриваемой системы.

Ранг матрицы

Определение 1

Система строк/столбцов некоторой матрицы называется линейно независимой, если ни одна из этих строк (ни один из этих столбцов) линейно не выражается через другие строки/столбцы.

Рангом системы строк/столбцов некоторой матрицы $A=\left(a_{ij} \right)_{m\times n} $ называется наибольшее количество линейно независимых строк/столбцов.

Ранг системы столбцов всегда совпадает с рангом системы строк. Этот ранг называется рангом рассматриваемой матрицы.

Ранг матрицы - это максимальный из порядков миноров заданной матрицы, для которых определитель отличен от нуля.

Для обозначения ранга матрицы используют следующие записи: $rangA$, $rgA$, $rankA$.

Ранг матрицы обладает следующими свойствами:

  1. Для нулевой матрицы ранг матрицы равен нулю, для остальных - ранг есть некоторое положительное число.
  2. Ранг прямоугольной матрицы порядка $m\times n$ не больше меньшего из количества строк или столбцов матрицы, т.е. $0\le rang\le \min (m,n)$.
  3. Для невырожденной квадратной матрицы некоторого порядка ранг этой матрицы совпадает с порядком данной матрицы.
  4. Определитель квадратной матрицы некоторого порядка, имеющей ранг меньший порядка матрицы, равный нулю.

Существует два способа нахождения ранга матрицы:

  • окаймлять с помощью определителей и миноров (метод окантовки);
  • посредством элементарных преобразований.

Алгоритм метода окантовки включает следующее:

  1. В случае, когда все миноры первого порядка являются равными нулю, имеем ранг рассматриваемой матрицы равным нулю.
  2. В случае, когда хотя бы один из миноров первого порядка не является равным нулю, и при этом все миноры второго порядка являются равными нулю, ранг матрицы равен 1.
  3. В случае, когда хотя бы один из миноров второго порядка не является равным нулю, выполняется исследование миноров третьего порядка. В результате находится минор порядка $k$ и проверяется, не являются ли равными нулю миноры порядка $k+1$. Если все миноры порядка $k+1$ является равными нулю, то ранг матрицы равен $k$.

Как определить ранг матрицы: примеры

Пример 1

Решение:

Отметим, что ранг исходной матрицы не может быть более 3.

Среди миноров первого порядка имеются миноры не равные нулю, например, $M_{1} =\left|-2\right|=-2$. Рассмотрим миноры второго порядка.

$M_{2} =\left|\begin{array}{cc} {-2} & {1} \\ {1} & {0} \end{array}\right|=-2\cdot 0-1\cdot 1=0-1=-1\ne 0$

$M_{3} =\left|\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right|=-2\cdot 0\cdot 3+1\cdot 3\cdot 1+1\cdot 2\cdot 4-1\cdot 0\cdot 4-1\cdot 1\cdot 3-2\cdot 3\cdot (-2)=3+8-0-3+12=20\ne 0$

Следовательно, ранг рассматриваемой матрицы равен 3.

Пример 2

Определить ранг матрицы $A=\left(\begin{array}{ccccc} {1} & {2} & {3} & {0} & {1} \\ {0} & {1} & {2} & {3} & {4} \\ {2} & {3} & {1} & {4} & {5} \\ {0} & {0} & {0} & {0} & {0} \end{array}\right)$.

Решение:

Отметим, что ранг исходной матрицы не может быть более 4 (строк 4, столбцов 5).

Среди миноров первого порядка имеются отличные от нуля, например, $M_{1} =\left|1\right|=1$. Рассмотрим миноры второго порядка.

$M_{2} =\left|\begin{array}{cc} {1} & {2} \\ {0} & {1} \end{array}\right|=1\cdot 1-0\cdot 2=1-0=1\ne 0$

Выполним окаймление минора второго порядка и получим минор третьего порядка.

$M_{3} =\left|\begin{array}{ccc} {1} & {2} & {3} \\ {0} & {1} & {2} \\ {2} & {3} & {1} \end{array}\right|=1\cdot 1\cdot 1+2\cdot 2\cdot 2+0\cdot 3\cdot 3-2\cdot 1\cdot 3-0\cdot 1\cdot 2-2\cdot 3\cdot 1=1+8+0-6-0-6=-3\ne 0$

Выполним окантовывание минора третьего порядка и получим минор четвертого порядка.

$M_{4} =\left|\begin{array}{cccc} {1} & {2} & {3} & {0} \\ {0} & {1} & {2} & {3} \\ {2} & {3} & {1} & {4} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)

$M_{5} =\left|\begin{array}{cccc} {1} & {2} & {3} & {1} \\ {0} & {1} & {2} & {4} \\ {2} & {3} & {1} & {5} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)

Все миноры четвертого порядка матрицы равны нулю, следовательно, ранг рассматриваемой матрицы равен 3.

Нахождение ранга матрицы посредством элементарных преобразований сводится к приведению матрицы к диагональному (ступенчатому) виду. Ранг полученной в результате преобразований матрицы равен числу ненулевых диагональных элементов.

Пример 3

Определить ранг матрицы $A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)$.

Решение:

Поменяем местами первую и вторую строки матрицы А:

$A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)$

Умножим первую строку матрицы В на число 2 и сложим со второй строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)$

Умножим первую строку матрицы С на число -1 и сложим с третьей строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)$

Умножим вторую строку матрицы D на число -2 и сложим с третьей строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$ - матрица ступенчатого вида

Количество ненулевых диагональных элементов равно 3, следовательно, $rang=3$.

Ранг матрицы

Определение 1

Система строк/столбцов некоторой матрицы называется линейно независимой, если ни одна из этих строк (ни один из этих столбцов) линейно не выражается через другие строки/столбцы.

Рангом системы строк/столбцов некоторой матрицы $A=\left(a_{ij} \right)_{m\times n} $ называется наибольшее количество линейно независимых строк/столбцов.

Ранг системы столбцов всегда совпадает с рангом системы строк. Этот ранг называется рангом рассматриваемой матрицы.

Ранг матрицы - это максимальный из порядков миноров заданной матрицы, для которых определитель отличен от нуля.

Для обозначения ранга матрицы используют следующие записи: $rangA$, $rgA$, $rankA$.

Ранг матрицы обладает следующими свойствами:

  1. Для нулевой матрицы ранг матрицы равен нулю, для остальных - ранг есть некоторое положительное число.
  2. Ранг прямоугольной матрицы порядка $m\times n$ не больше меньшего из количества строк или столбцов матрицы, т.е. $0\le rang\le \min (m,n)$.
  3. Для невырожденной квадратной матрицы некоторого порядка ранг этой матрицы совпадает с порядком данной матрицы.
  4. Определитель квадратной матрицы некоторого порядка, имеющей ранг меньший порядка матрицы, равный нулю.

Существует два способа нахождения ранга матрицы:

  • окаймлять с помощью определителей и миноров (метод окантовки);
  • посредством элементарных преобразований.

Алгоритм метода окантовки включает следующее:

  1. В случае, когда все миноры первого порядка являются равными нулю, имеем ранг рассматриваемой матрицы равным нулю.
  2. В случае, когда хотя бы один из миноров первого порядка не является равным нулю, и при этом все миноры второго порядка являются равными нулю, ранг матрицы равен 1.
  3. В случае, когда хотя бы один из миноров второго порядка не является равным нулю, выполняется исследование миноров третьего порядка. В результате находится минор порядка $k$ и проверяется, не являются ли равными нулю миноры порядка $k+1$. Если все миноры порядка $k+1$ является равными нулю, то ранг матрицы равен $k$.

Как определить ранг матрицы: примеры

Пример 1

Решение:

Отметим, что ранг исходной матрицы не может быть более 3.

Среди миноров первого порядка имеются миноры не равные нулю, например, $M_{1} =\left|-2\right|=-2$. Рассмотрим миноры второго порядка.

$M_{2} =\left|\begin{array}{cc} {-2} & {1} \\ {1} & {0} \end{array}\right|=-2\cdot 0-1\cdot 1=0-1=-1\ne 0$

$M_{3} =\left|\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right|=-2\cdot 0\cdot 3+1\cdot 3\cdot 1+1\cdot 2\cdot 4-1\cdot 0\cdot 4-1\cdot 1\cdot 3-2\cdot 3\cdot (-2)=3+8-0-3+12=20\ne 0$

Следовательно, ранг рассматриваемой матрицы равен 3.

Пример 2

Определить ранг матрицы $A=\left(\begin{array}{ccccc} {1} & {2} & {3} & {0} & {1} \\ {0} & {1} & {2} & {3} & {4} \\ {2} & {3} & {1} & {4} & {5} \\ {0} & {0} & {0} & {0} & {0} \end{array}\right)$.

Решение:

Отметим, что ранг исходной матрицы не может быть более 4 (строк 4, столбцов 5).

Среди миноров первого порядка имеются отличные от нуля, например, $M_{1} =\left|1\right|=1$. Рассмотрим миноры второго порядка.

$M_{2} =\left|\begin{array}{cc} {1} & {2} \\ {0} & {1} \end{array}\right|=1\cdot 1-0\cdot 2=1-0=1\ne 0$

Выполним окаймление минора второго порядка и получим минор третьего порядка.

$M_{3} =\left|\begin{array}{ccc} {1} & {2} & {3} \\ {0} & {1} & {2} \\ {2} & {3} & {1} \end{array}\right|=1\cdot 1\cdot 1+2\cdot 2\cdot 2+0\cdot 3\cdot 3-2\cdot 1\cdot 3-0\cdot 1\cdot 2-2\cdot 3\cdot 1=1+8+0-6-0-6=-3\ne 0$

Выполним окантовывание минора третьего порядка и получим минор четвертого порядка.

$M_{4} =\left|\begin{array}{cccc} {1} & {2} & {3} & {0} \\ {0} & {1} & {2} & {3} \\ {2} & {3} & {1} & {4} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)

$M_{5} =\left|\begin{array}{cccc} {1} & {2} & {3} & {1} \\ {0} & {1} & {2} & {4} \\ {2} & {3} & {1} & {5} \\ {0} & {0} & {0} & {0} \end{array}\right|=0$ (содержит нулевую строку)

Все миноры четвертого порядка матрицы равны нулю, следовательно, ранг рассматриваемой матрицы равен 3.

Нахождение ранга матрицы посредством элементарных преобразований сводится к приведению матрицы к диагональному (ступенчатому) виду. Ранг полученной в результате преобразований матрицы равен числу ненулевых диагональных элементов.

Пример 3

Определить ранг матрицы $A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)$.

Решение:

Поменяем местами первую и вторую строки матрицы А:

$A=\left(\begin{array}{ccc} {-2} & {1} & {4} \\ {1} & {0} & {3} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)$

Умножим первую строку матрицы В на число 2 и сложим со второй строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {-2} & {1} & {4} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)$

Умножим первую строку матрицы С на число -1 и сложим с третьей строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {1} & {2} & {3} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)$

Умножим вторую строку матрицы D на число -2 и сложим с третьей строкой:

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {2} & {0} \end{array}\right)\sim \left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$

$\left(\begin{array}{ccc} {1} & {0} & {3} \\ {0} & {1} & {10} \\ {0} & {0} & {-20} \end{array}\right)$ - матрица ступенчатого вида

Количество ненулевых диагональных элементов равно 3, следовательно, $rang=3$.

Любая матрица A порядка m×n можно рассматривать как совокупность m векторов строк или n векторов столбцов .

Рангом матрицы A порядка m×n называется максимальное количество линейно независимых векторов столбцов или векторов строк.

Если ранг матрицы A равен r , то пишется:

Нахождение ранга матрицы

Пусть A произвольная матрица порядка m ×n . Для нахождения ранга матрицы A применим к ней метод исключения Гаусса.

Отметим, что если на каком-то этапе исключения ведущий элемент окажется равным нулю, то меняем местами данную строку со строкой, в котором ведущий элемент отличен от нуля. Если окажется, что нет такой строки, то переходим к следующему столбцу и т.д.

После прямого хода исключения Гаусса получим матрицу, элементы которой под главной диагональю равны нулю. Кроме этого могут оказаться нулевые векторы строки.

Количество ненулевых векторов строк и будет рангом матрицы A .

Рассмотрим все это на простых примерах.

Пример 1.

Умножив первую строку на 4 и прибавив ко второй строке и умножив первую строку на 2 и прибавив к третьей строке имеем:

Вторую строку умножим на -1 и прибавим к третьей строке:

Получили две ненулевые строки и, следовательно ранг матрицы равен 2.

Пример 2.

Найдем ранг следующей матрицы:

Умножим первую строку на -2 и прибавим ко второй строке. Аналогично обнулим элементы третьей и четвертой строки первого столбца:

Обнулим элементы третьей и четвертой строк второго столбца прибавляя соответствующие строки ко второй строке умноженной на число -1.

Публикации по теме