Формула энтропии в информатике

Основоположенник теории информации Клод Шеннон определил информацию, как снятую неопределенность. Точнее сказать, получение информации — необходимое условие для снятия неопределенности. Неопределенность возникает в ситуации выбора. Задача, которая решается в ходе снятия неопределенности – уменьшение количества рассматриваемых вариантов (уменьшение разнообразия), и в итоге выбор одного соответствующего ситуации варианта из числа возможных. Снятие неопределенности дает возможность принимать обоснованные решения и действовать. В этом управляющая роль информации.

Представьте, что вы зашли в магазин и попросили продать вам жевательную резинку. Продавщица, у которой, скажем, 16 сортов жевательной резинки, находится в состоянии неопределенности. Она не может выполнить вашу просьбу без получения дополнительной информации. Если вы уточнили, скажем, — «Orbit», и из 16 первоначальных вариантов продавщица рассматривает теперь только 8, вы уменьшили ее неопределенность в два раза (забегая вперед, скажем, что уменьшение неопределенности вдвое соответствует получению 1 бита информации). Если вы, не мудрствуя лукаво, просто указали пальцем на витрине, — «вот эту!», то неопределенность была снята полностью. Опять же, забегая вперед, скажем, что этим жестом в данном примере вы сообщили продавщице 4 бита информации.

Ситуация максимальной неопределенности предполагает наличие нескольких равновероятных альтернатив (вариантов), т.е. ни один из вариантов не является более предпочтительным. Причем, чем больше равновероятных вариантов наблюдается, тем больше неопределенность, тем сложнее сделать однозначный выбор и тем больше информации требуется для этого получить. Для N вариантов эта ситуация описывается следующим распределением вероятностей: <1/N, 1/N, … 1/N>.

Минимальная неопределенность равна 0, т.е. эта ситуация полной определенности, означающая что выбор сделан, и вся необходимая информация получена. Распределение вероятностей для ситуации полной определенности выглядит так: .

Величина, характеризующая количество неопределенности в теории информации обозначается символом H и имеет название энтропия, точнее информационная энтропия.

Энтропия (H)мера неопределенности, выраженная в битах. Так же энтропию можно рассматривать как меру равномерности распределения случайной величины.

Рис. 8. Поведение энтропии для случая двух альтернатив.

На рисунке 8. показано поведение энтропии для случая двух альтернатив, при изменении соотношения их вероятностей (p, (1-p)).

Максимального значения энтропия достигает в данном случае тогда, когда обе вероятности равны между собой и равны ½, нулевое значение энтропии соответствует случаям (p=0, p1=1) и (p=1, p1=0).

Количество информации I и энтропия H характеризуют одну и ту же ситуацию, но с качественно противоположенных сторон. I – это количество информации, которое требуется для снятия неопределенности H. По определению Леона Бриллюэна информация есть отрицательная энтропия (негэнтропия).

Рис. 9. Связь между энтропией и количеством информации.

Когда неопределенность снята полностью, количество полученной информации I равно изначально существовавшей неопределенности H.

При частичном снятии неопределенности, полученное количество информации и оставшаяся неснятой неопределенность составляют в сумме исходную неопределенность. Ht + It = H.

По этой причине, формулы, которые будут представлены ниже для расчета энтропии H являются и формулами для расчета количества информации I, т.е. когда речь идет о полном снятии неопределенности, H в них может заменяться на I.

Формула Шеннона

В общем случае, энтропия H и количество получаемой в результате снятия неопределенности информации I зависят от исходного количества рассматриваемых вариантов N и априорных вероятностей реализации каждого из них P: , p1, …pN-1>, т.е. H=F(N, P). Расчет энтропии в этом случае производится по формуле Шеннона, предложенной им в 1948 году в статье "Математическая теория связи".

В частном случае, когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов, т.е. H=F(N). В этом случае формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, т.е. не 20 лет раньше.

Формула Шеннона имеет следующий вид:

(1)

Знак минус в формуле (1) не означает, что энтропия – отрицательная величина. Объясняется это тем, что pi£1 по определению, а логарифм числа меньшего единицы — величина отрицательная. По свойству логарифма , поэтому эту формулу можно записать и во втором варианте, без минуса перед знаком суммы.

интерпретируется как частное количество информации , получаемое в случае реализации i-ого варианта. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины , I1, … IN-1>.

Приведем пример расчета энтропии по формуле Шеннона. Пусть в некотором учреждении состав работников распределяется так: ¾ — женщины, ¼ — мужчины. Тогда неопределенность, например, относительно того, кого вы встретите первым, зайдя в учреждение, будет рассчитана рядом действий, показанных в таблице 1.

pi 1/pi Ii=log2(1/pi), бит pi*log2(1/pi), бит
Ж 3/4 4/3 log2(4/3)=0,42 3/4 * 0,42=0,31
М 1/4 4/1 log2(4)=2 1/4 * 2=0,5
å 1 H=0,81 бит

Если же априори известно, что мужчин и женщин в учреждении поровну (два равновероятных варианта), то при расчете по той же формуле мы должны получить неопределенность в 1 бит. Проверка этого предположения проведена в таблице 2.

pi 1/pi Ii=log2(1/pi), бит pi*log2(1/pi), бит
Ж 1/2 log2(2)=1 1/2 * 1=1/2
М 1/2 log2(2)=1 1/2 * 1=1/2
å 1 H=1 бит

Формула Шеннона (1) совпала по форме с формулой Больцмана, полученной на 70 лет ранее для измерения термодинамической энтропии идеального газа. Эта связь между количеством информации и термодинамической энтропией послужила сначала причиной горячих дискуссий, а затем – ключом к решению ряда научных проблем. В самом общем случае энтропия понимается как мера неупорядоченности, неорганизованности материальных систем.

В соответствии со вторым законом термодинамики закрытые системы, т.е. системы лишенные возможности вещественно-энергетически-информационного обмена с внешней средой, стремятся, и с течением времени неизбежно приходят к естественному устойчивому равновесному внутреннему состоянию, что соответствует состоянию с максимальной энтропией. Закрытая система стремится к однородности своих элементов и к равномерности распределения энергии связей между ними. Т.е. в отсутствии информационного процесса материя самопроизвольно забывает накопленную информацию.

Формула Хартли

Мы уже упоминали, что формула Хартли – частный случай формулы Шеннона для равновероятных альтернатив.

Подставив в формулу (1) вместо pi его (в равновероятном случае не зависящее от i)значение , получим:

Читайте также:  Serialization error action needed

, таким образом, формула Хартли выглядит очень просто:

(2)

Из нее явно следует, что чем больше количество альтернатив (N), тем больше неопределенность (H). Эти величины связаны в формуле (2) не линейно, а через двоичный логарифм. Логарифмирование по основанию 2 и приводит количество вариантов к единицам измерения информации – битам.

Заметьте, что энтропия будет являться целым числом лишь в том случае, если N является степенью числа 2, т.е. если N принадлежит ряду:

Рис. 10. Зависимось энтропии от количества равновероятных вариантов выбора (равнозначных альтернатив).

Напомним, что такое логарифм.

Рис. 11. Нахождение логарифма b по основанию a — это нахождение степени, в которую нужно возвести a, чтобы получить b.

Логарифм по основанию 2 называется двоичным:

Логарифм по основанию 10 –называется десятичным:

Основные свойства логарифма:

1. log(1)=0, т.к. любое число в нулевой степени дает 1;

Для решения обратных задач, когда известна неопределенность (H) или полученное в результате ее снятия количество информации (I) и нужно определить какое количество равновероятных альтернатив соответствует возникновению этой неопределенности, используют обратную формулу Хартли, которая выглядит еще проще:

(3)

Например, если известно, что в результате определения того, что интересующий нас Коля Иванов живет на втором этаже, было получено 3 бита информации, то количество этажей в доме можно определить по формуле (3), как N=2 3 =8 этажей.

Если же вопрос стоит так: “в доме 8 этажей, какое количество информации мы получили, узнав, что интересующий нас Коля Иванов живет на втором этаже?”, нужно воспользоваться формулой (2): I=log2(8)=3 бита.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8921 — | 7230 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Энтропи́я (информационная) — мера хаотичности информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Так, возьмём, например, последовательность символов, составляющих какое-либо предложение на русском языке. Каждый символ появляется с разной частотой, следовательно, неопределённость появления для некоторых символов больше, чем для других. Если же учесть, что некоторые сочетания символов встречаются очень редко, то неопределённость ещё более уменьшается (в этом случае говорят об энтропии n-ого порядка, см. Условная энтропия).

Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу. Ср. тж. Термодинамическая энтропия

Формальные определения

Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения. Величина $ log_2 <1 over p(i)>$ называется частной энтропией, характеризующей только i-e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i, умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей.

Шеннон вывел это определение энтропии из следующих предположений:

  • мера должна быть непрерывной; т. е. изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение энтропии;
  • в случае, когда все варианты (буквы в приведенном примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать полную энтропию;
  • должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых энтропия конечного результата должна будет являтся суммой энтропий промежуточных результатов.

Шеннон показал, что любое определение энтропии, удовлетворяющее этим предположениям, должно быть в форме:

где K — константа (и в действительности нужна только для выбора единиц измерения).

Шеннон определил, что измерение энтропии (H = − p1 log2 p1 − … − pn log2 pn), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надежной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидания «количества информации», содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка — имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т.д. См. Цепи Маркова.

$ H_b(mathcal) = — sum_^n p_i log_b p_i $

Определение энтропии Шеннона очень связано с понятием термодинамической энтропии. Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а следовательно и энтропия) очевидно меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (т.е. вероятности двухбуквенных сочетаний):

$ H_1(mathcal) = — sum_i p_i sum_j p_i (j) log_2 p_i (j) $

где $ displaystyle i $ — это состояние, зависящее от предшествующего символа, и $ displaystyle p_i(j) $ — это вероятность $ displaystyle j $ , при условии, что $ displaystyle i $ был предыдущим символом.

Так, для русского алфавита без буквы «ё» $ H_0=5, H_1=4,358, H_2=3,52, H_3=3,01 $ [1]

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются т.н. канальные матрицы. Так, для описания потерь со стороны источника (т.е. известен посланный сигнал), рассматривают условную вероятность $ displaystyle p(b_j|a_i) $ получения приёмником символа $ displaystyle b_j $ при условии, что был отправлен символ $ displaystyle a_i $ . При этом канальная матрица имеет следующий вид:

Читайте также:  Hp pavilion g6 1058er характеристики
$ displaystyle b_1 $ $ displaystyle b_2 $ . $ displaystyle b_j $ . $ displaystyle b_m $
$ displaystyle a_1 $ $ displaystyle p(b_1|a_1) $ $ displaystyle p(b_2|a_1) $ . $ displaystyle p(b_j|a_i) $ . $ displaystyle p(b_m|a_1) $
$ displaystyle a_2 $ $ displaystyle p(b_1|a_2) $ $ displaystyle p(b_2|a_2) $ . $ displaystyle p(b_j|a_2) $ . $ displaystyle p(b_m|a_2) $
. . . . . . .
$ displaystyle a_i $ $ displaystyle p(b_1|a_i) $ $ displaystyle p(b_2|a_i) $ . $ displaystyle p(b_j|a_i) $ . $ displaystyle p(b_m|a_i) $
. . . . . . .
$ displaystyle a_m $ $ displaystyle p(b_1|a_m) $ $ displaystyle p(b_2|a_m) $ . $ displaystyle p(b_j|a_m) $ . $ displaystyle p(b_m|a_m) $

Очевидно, вероятности, расположенные по диагонали описывают вероятность правильного приёма, а сумма всех элементов столбца даст вероятность появления соответствующего символа на стороне приёмника — $ displaystyle p(b_j) $ . Потери, приходящиеся на предаваемый сигнал $ displaystyle a_i $ , описываются через частную условную энтропию:

$ H(B|a_i)=-sum_^m p(b_j|a_i)log_2 p(b_j|a_i) $

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

$ displaystyle H(B|A)=sum_i p(a_i)H(B|a_i) $

$ displaystyle H(B|A) $ означает энтропию со стороны источника, аналогично рассматривается $ displaystyle H(A|B) $ — энтропия со стороны приёмника: вместо $ displaystyle p(b_j|a_i) $ всюду указывается $ displaystyle p(a_i|b_j) $ (суммируя элементы строки можно получить $ displaystyle p(a_i) $ , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, т.е. вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия, или энтропия объединения, предназначена для рассчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается $ displaystyle H(AB) $ , где $ displaystyle A $ , как всегда, характеризует передатчик, а $ displaystyle B $ — приёмник.

Взаимосязь переданных и полученных сигналов описывается вероятностями совместных событий $ displaystyle p(a_i b_j) $ , и для полного описания характеристик канала требуется только одна матрица:

$ displaystyle p(a_1 b_1) $ $ displaystyle p(a_1 b_2) $ $ displaystyle p(a_i b_j) $ $ displaystyle p(a_1 b_m) $
$ displaystyle p(a_2 b_1) $ $ displaystyle p(a_2 b_2) $ $ displaystyle p(a_2 b_j) $ $ displaystyle p(a_2 b_m) $
$ displaystyle p(a_i b_1) $ $ displaystyle p(a_i b_2) $ $ displaystyle p(a_i b_j) $ $ displaystyle p(a_i b_m) $
$ displaystyle p(a_m b_1) $ $ displaystyle p(a_m b_2) $ $ displaystyle p(a_m b_j) $ $ displaystyle p(a_m b_m) $

Для более общего случая, когда описывается не канал, а просто взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером $ displaystyle j $ даст $ displaystyle p(b_j) $ , сумма строки с номером $ displaystyle i $ есть $ displaystyle p(a_i) $ , а сумма всех элементов матрицы равна 1. Совместная вероятность $ displaystyle p(a_ib_j) $ событий $ displaystyle a_i $ и $ displaystyle b_j $ вычисляется как произведение исходной и условной вероятности,

Условные вероятности производятся по формуле Байеса. Таким образом имеются все данные для вычисления энтропий источника и приёмника:

$ H(A)=-sum_i left( sum_j p(a_i b_j) log sum_j p(a_i b_j)
ight) $ $ H(B)=-sum_j left( sum_i p(a_i b_j) log sum_i p(a_i b_j)
ight) $

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

$ displaystyle H(AB)=-sum_i sum_j p(a_i b_j) log p(a_i b_j) $

Единица измерения — бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов — отправленного и полученного. Путём несложных преобразований также получаем

$ displaystyle H(AB)= H(A)+H(B|A) = H(B)+H(A|B). $

Взаимная энтропия обладает свойством информационной полноты — из неё можно получить все рассматриваемые величины.

Свойства

Важно помнить, что энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию $ -2(0,5log_2 0,5)=1 $ бита на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: $ -sum_^infty log_2 1 = 0 $ . Так, к примеру, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Альтернативное определение

Другим способом определения функции энтропии H является доказательство, что H однозначно определена (как указано ранее), если и только если H удовлетворяет пунктам 1)—3):

1) H(p1, …, pn) определена и непрерывна для всех p1, …, pn, где pi $ in $ [0,1] для всех i = 1, …, n и p1 + … + pn = 1. (Заметьте, что эта функция зависит только от распределения вероятностей, а не от алфавита.)

2) Для целых положительных n, должно выполняться следующее неравенство:

3) Для целых положительных bi, где b1 + … + bn = n, должно выполняться равенство:

$ Hleft(frac<1>, ldots, frac<1>
ight) = Hleft(frac
, ldots, frac
ight) + sum_^k frac
Hleft(frac<1>, ldots, frac<1>
ight). $

Эффективность

Исходный алфавит, встречающийся на практике, имеет вероятностное распределение, которое далеко от оптимального. Если исходный алфавит имел n символов, тогда он может может быть сравнён с «оптимизированным алфавитом», вероятностное распределение которого однородно. Соотношение энтропии исходного и оптимизированного алфавита — это эффективность исходного алфавита, которая может быть выражена в процентах.

Из этого следует, что эффективность исходного алфавита с n символами может быть определена просто как равная его n-арной энтропии.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически — типичного набора или, на практике, — кодирования Хаффмана, кодирования Лемпеля-Зива или арифметического кодирования.

История

В 1948 году, исследуя проблему рациональной передачи информации через зашумленный коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки двух основных направлений: теории информации, которая использует понятие вероятности и эргодическую теорию для изучения статистических характеристик данных и коммуникационных систем, и теории кодирования, в которой используются главным образом алгебраические и геометрические инструменты для разработки эффективных шифров.

Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

Литература

  1. ↑ Д.С. Лебедев, В.А. Гармаш. О возможности увеличения скорости передачи телеграфных сообщений. — М.:Электросвязь, 1958, №1. с.68-69

2.Цымбал В.П. Теория информации и кодирование. — К.:Выща Школа, 1977. — 288 с.

Читайте также:  Chieftec navitas gpm 550s

См. также

  • Энтропийное кодирование
  • Цепь Маркова
  • Для понимания информационной энтропии можно прибегнуть к примеру из области термодинамической энтропии получившему широко известное название Демона Максвелла.

Внешние ссылки

Эта статья содержит материал из статьи Информационная энтропия русской Википедии.


Как может показаться, анализ сигналов и данных — тема достаточно хорошо изученная и уже сотни раз проговоренная. Но есть в ней и некоторые провалы. В последние годы словом «энтропия» бросаются все кому не лень, толком и не понимая, о чем говорят. Хаос — да, беспорядок — да, в термодинамике используется — вроде тоже да, применительно к сигналам — и тут да. Хочется хотя бы немного прояснить этот момент и дать направление тем, кто захочет узнать чуть больше об энтропии. Поговорим об энтропийном анализе данных.

В русскоязычных источниках очень мало литературы на этот счет. А цельное представление вообще получить практически нереально. Благо, моим научным руководителем оказался как раз знаток энтропийного анализа и автор свеженькой монографии [1], где все расписано «от и до». Счастью предела не было, и я решила попробовать донести мысли на этот счет до более широкой аудитории, так что пару выдержек возьму из монографии и дополню своими исследованиями. Может, кому и пригодится.

Итак, начнем с начала. Шенноном в 1963 г. было предложено понятие меры усредненной информативности испытания (непредсказуемости его исходов), которая учитывает вероятность отдельных исходов (до него был еще Хартли, но это опустим). Если энтропию измерять в битах, и взять основание 2, то получим формулу для энтропии Шеннона
, где Pi это вероятность наступления i-го исхода.

То есть в этом случае энтропия напрямую связана с «неожиданностью» возникновения события. А отсюда вытекает и его информативность — чем событие более предсказуемо, тем оно менее информативно. Значит и его энтропия будет ниже. Хотя открытым остается вопрос о соотношениях между свойствами информации, свойствами энтропии и свойствами различных ее оценок. Как раз с оценками мы и имеем дело в большинстве случаев. Все, что поддается исследованию — это информативность различных индексов энтропии относительно контролируемых изменений свойств процессов, т.е. по существу, их полезность для решения конкретных прикладных задач.

Энтропия сигнала, описываемого некоторым образом (т.е. детерминированного) стремится к нулю. Для случайных процессов энтропия возрастает тем больше, чем выше уровень «непредсказуемости». Возможно, именно из такой связки трактовок энтропии вероятность->непредсказуемость->информативность и вытекает понятие «хаотичности», хотя оно достаточно неконкретно и расплывчато (что не мешает его популярности). Встречается еще отождествление энтропии и сложности процесса. Но это снова не одно и то же.

Энтропия бывает разная черная белая красная:

  • термодинамическая
  • алгоритмическая
  • информационная
  • дифференциальная
  • топологическая

Все они различаются с одной стороны, и имеют общую основу с другой. Конечно, каждый вид применяется для решения определенных задач. И, к сожалению, даже в серьезных работах встречаются ошибки в интерпретации результатов расчета. А все связано с тем, что на практике в 90% случаев мы имеем дело с дискретным представлением сигнала непрерывной природы, что существенно влияет на оценку энтропии (на деле там в формулке появляется поправочный коэффициент, который обычно игнорируют).

Для того, чтобы немного обрисовать области применения энтропии к анализу данных, рассмотрим небольшую прикладную задачку из монографии [1] (которой нет в цифровом виде, и скорей всего не будет).

Пусть есть система, которая каждые 100 тактов переключается между несколькими состояниями и порождает сигнал x (рисунок 1.5), характеристики которого изменяются при переходе. Но какие — нам не известно.

Разбив x на реализации по 100 отсчетов можно построить эмпирическую плотность распределения и по ней вычислить значение энтропии Шеннона. Получим значения, «разнесенные» по уровням (рисунок 1.6).

Как можно видеть, переходы между состояниями явно наблюдаются. Но что делать в случае, если время переходов нам не известно? Как оказалось, вычисление скользящим окном может помочь и энтропия так же «разносится» на уровни.В реальном исследовании мы использовали такой эффект для анализа ЭЭГ сигнала (разноцветные картинки про него будут дальше).

Теперь еще про одно занятное свойство энтропии — она позволяет оценить степень связности нескольких процессов. При наличии у них одинаковых источников мы говорим, что процессы связаны (например, если землетрясение фиксируют в разных точках Земли, то основная составляющая сигнала на датчиках общая). В таких случаях обычно применяют корреляционный анализ, однако он хорошо работает только для выявления линейных связей. В случае же нелинейных (порожденных временными задержками, например) предлагаем пользоваться энтропией.

Рассмотрим модель из 5ти скрытых переменных(их энтропия показана на рисунке ниже слева) и 3х наблюдаемых, которые генерируются как линейная сумма скрытых, взятых с временными сдвигами по схеме, показанной ниже справа. Числа-это коэффициенты и временные сдвиги (в отсчетах).

Так вот, фишка в том, что энтропия связных процессов сближается при усилении их связи. Черт побери, как это красиво-то!

Такие радости позволяют вытащить практически из любых самых странных и хаотичных сигналов (особенно полезно в экономике и аналитике) дополнительные сведения. Мы их вытаскивали из электроэнцефалограммы, считая модную нынче Sample Entropy и вот какие картинки получили.

Можно видеть, что скачки энтропии соответствуют смене этапов эксперимента. На эту тему есть пара статей и уже защищена магистерская, так что если кому будут интересны подробности — с радостью поделюсь. А так по миру по энтропии ЭЭГ ищут уже давно разные вещи — стадии наркоза, сна, болезни Альцгеймера и Паркинсона, эффективность лечения от эпилепсии считают и тд. Но повторюсь-зачастую расчеты ведутся без учета поправочных коэффициентов и это грустно, так как воспроизводимость исследований под большим вопросом (что критично для науки, так то).

Резюмируя, остановлюсь на универсальности энтропийного аппарата и его действительной эффективности, если подходить ко всему с учетом подводных камней. Надеюсь, что после прочтения у вас зародится зерно уважения к великой и могучей силе Энтропии.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *