Формула нахождения количества диагоналей многоугольника

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 14. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Нахождение числа диагоналей является важнейшим навыком, который пригодится при решении геометрических задач. Это не так сложно, как кажется – просто нужно запомнить формулу. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника. [1] Многоугольник – это любая фигура с как минимум тремя сторонами. При помощи несложной формулы можно найти количество диагоналей в любом многоугольнике, например, с 4 сторонами или с 4000 сторон.

Учебный год: 2008 / 2009

Материалы работы: 569130.zip * (48,7 кБ)

Описание работы:

В работе выведены две формулы нахождения количества диагоналей многоугольника.

Что ты хочешь узнать?

Ответ

Проверено экспертом

Из одной вершины вторым концом диагонали не будут являться сама вершина и 2 ее соседние вершины, т.е. всего 3 точки. Значит, возможных концов диагоналей из одной вершины на 3 меньше общего числа вершин.

Умножаем на число вершин, т.к. началом диагонали может служить любая вершина.

При таком подсчете каждая диагональ учитывается 2 раза, т.к. диагональ соединяет 2 вершины многоугольника и подсчет выполняется для каждой вершины. Поэтому полученный результат нужно разделить на 2.

Семиугольник: 7*(7-3)/2 = 7*4/2 = 14
Десятиугольник: 10*(10-3)/2 = 5*7 = 35
Стоугольник: 100*(100-3)/2 = 50*97 = 4850

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *