Экспонента в комплексной степени

Теорию функций e z , sin z, cos z комплексного аргумента построил Л.Эйлер и систематически изложил ее в своем классическом труде «Введение в анализ бесконечно малых» в 1748 г. В следующем году он опубликовал теорию логарифма комплексного аргумента.

1. Начнем с показательной функции, которую Эйлер определил как сумму степенного ряда

Ряд сходится, причем абсолютно, при любом zeC. Действительно, составьте ряд из модулей членов ряда (6.1) и примените к нему признак Далам- бера. Такое определение показательной функции комплексного переменного положило начало анализа в комплексной области — ТФКП.

В литературе можно найти определение функции (6.1) тем же предельным соотношением, что и в действительном анализе:

но здесь исключительно используется представление (6.1). Важно, что для комплексных значений аргумента остается верной теорема сложения:

Проверим это свойство. Имеем

Раскроем скобки и будем располагать слагаемые по группам, в которых сумма показателей степеней при а и b одна и та же. Получим

При чисто мнимом z — yi согласно (6.1) имеем Или, отделяя вещественную часть от мнимой,

Суммы рядов в скобках равны соответственно cos^,sin>>, и мы приходим к замечательной формуле Эйлера

Заметим, что этой формулой, в которой левая часть называлась символом Эйлера, мы неоднократно пользовались с целью компактификации вычислений с комплексными числами. До сих пор символ е ул употреблялся для сокращенного обозначения правой части формулы, а теперь можем его понимать как мнимую степень числа е. Например, равенство е я = -1 всегда вызывало восторг у математиков — ведь вроде бы несложной зависимостью оно увязывает между собой две знаменитые константы.

Из теоремы сложения при z = х + yi получим е : = е хе у> , или

Заметим, что в учебной литературе это равенство часто берется за определение показательной функции комплексного переменного. Оно очень удобное, с его помощью можно, например, доказать голоморфность экспоненты во всей комплексной плоскости. В самом деле, полагая е г = t/ + /v, из (6.2) находим, что и = е х cosy,v = е х sin у. Эти функции везде дифференцируемы в смысле действительного анализа и для них выполняются условия Коши-Римана:

Сохраняется формула дифференцирования, знакомая из действительного анализа. Воспользуемся одной из записей комплексной производной:

При действительных значениях аргумента показательная функция положительная и, следовательно, в ноль не обращается. Из (6.2) заключаем, что е : ф 0 Vz е С (ведь не могут косинус и синус одновременно обратиться в ноль).

Из теоремы сложения и формулы Эйлера вытекает периодичность экспоненты с мнимым основным периодом 2 я7. Действительно,

е г * 2я> =е : ? е 2т =е : 1 = е ; , т.е. число 2я7 является периодом. Проверим, что он основной: ему кратен любой другой период Т. Пусть е г+ : . Умножая обе части на е

: , получим е г =. Полагая T = Ty+iT2, получим е 7| (cosТ2 +/sin Т2) = 1. Отсюда е 7 ‘ cosТ2 = 1, sin Т2= 0 согласно равенству двух комплексных чисел. Из полученных соотношений следует

2. Тригонометрические функции комплексного переменного. Следуя Эйлеру, положим

Нетрудно проверить, что эти ряды сходятся во всей комплексной плоскости.

Запишем равенство (6.1), заменяя в нем z на iz. Под ним выпишем (6.1) с заменой z на -iz. Складывая и вычитая полученные равенства, придем к соотношениям е ,: +е

а = 2cos z, е а -е

Эти формулы целиком сводят изучение тригонометрического синуса и косинуса к изучению показательной функции. Например, дифференцируя почленно вторую из них, придем к известному из анализа правилу дифференцирования (sin z)’ = cosz.

Основное тригонометрическое тождество оказывается справедливым. Возведите в квадраты обе части в (6.4) и затем сложите их; увидите единицу.

В комплексной области сохраняются теоремы сложения, знакомые еще со школы. Например, sin(a + 6) = sintf-cos6 + cosa*sin&. Для доказательства достаточно проверить, что

Выполнив операции, указанные в правой части, придем к рассматриваемой теореме сложения.

Обратим внимание на то, что синус и косинус в комплексной плоскости не являются ограниченными функциями. Например, положим z = it (/ > 0), тогда

что вовсе не согласуется с ограниченностью.

Как известно, в действительной области нули синуса исчерпываются числами, кратными /г, а нули косинуса содержатся в формуле

г = — + кл (к gZ). Возникает вопрос: нс появятся ли у этих функций, кроме

указанных, еще другие, комплексные нули при выходе на комплексную плоскость? Ниже мы увидим, других нулей нет.

Подводя итоги, мы видим, что рассмотренные выше функции можно определить и для комплексного аргумента и что известные из школьного курса формулы остаются справедливыми. Но обнаружился новый факт: показательная функция периодическая, хотя период мнимый. Такая периодичность в школьном курсе и нс могла быть обнаружена, так как в нем изучались только функции действительного аргумента.

3. Гиперболические функции комплексного переменного. В духе равенств (6.3) положим

Это — соответственно косинус гиперболический и синус гиперболический комплексного числа z. Ряды (6.5) сходятся, как и выше, при любых значениях Z.

Заменим в (6.1) z на —z и к исходному равенству прибавим полученное. По аналогии с (6.4) получим следующие выражения рассматриваемых функций через экспоненту:

При действительных z- х эти равенства чаще всего и берутся в качестве определений. Соответствующие графики представлены на рис. 12.

Из равенств (6.6) и устанавливаются основные свойства гиперболических функций. Исторически они были известны и до Эйлера. Возникая из ряда задач математической физики, обыкновенных дифференциальных уравнений, они широко использовались в приложениях, например, в электротехни- В литературе встречаются обозначения этих функций, когда аргумент заключается в скобки.

ке, сопротивлении материалов и т.д. Важную роль эти функции играют в геометрии Лобачевского.

Формулы (6.4) и (6.6) позволяют установить связи между тригонометрическими и гиперболическими функциями:

При мер. Вычислить приближенно с 4D sin(l -2/).

Решение. Искомое выражение равно sin 1 cos2/-cosl sin2/. Или, в свете предыдущих равенств, получим sin 1 c/?2-/cosl shl. Ответ: 3.1659-1.9595/.

Пример. Доказать, что нули функции sinz исчерпываются формулой z — 7Гк (k^Z).

Решение. Пусть sin z = sin(.v + yi) = 0 sin * • cosyi + cos*• sinyi = 0. Ho здесь cosyi=chyy sin yi = ishy, поэтому sin xchy+/cos* • shy = 0. Отсюда заключаем, что sin*c/?y = 0, cos*-shy = 0. Так как гиперболический косинус при действительном значении аргумента в нуль не обращается (рис. 12), то sin* = 0=>* = як <к eZ).Тогда из второго уравнения

cosxk s/jy = 0 =>shy = 0 у = 0. Итак, все корни уравнения sinz = 0 заключаются в формуле z = x + iy = 7rk. К такому же результату привела бы вторая формула в (6.4). Советуем читателю проделать более краткие выкладки.

4. Логарифмы и общая степенная функция.

В области действительных чисел ноль и отрицательные числа логарифмов не имеют. Выясним, как обстоит дело при переходе в область комплексных чисел. Определим понятие натурального логарифма комплексного числа так же, как в действительном анализе.

Число w называется натуральным логарифмом данного комплексного числа z, если е" = z.

Исторически первая удовлетворительная теория логарифма была дана Л.Эйлером в 1749 г., который исходил из следующего определения:

Читайте также:  Как выветрить бензин из салона машины

Поскольку показательная функция нс принимает нулевого значения, то ноль не имеет логарифмов в комплексной области. В силу периодичности экспоненты у числа z логарифм не единственный. Например, для z = l в качестве логарифмов можно взять числа -w—2nki (keZ). Множество всех натуральных логарифмов данного числа z^O обозначается символом Lnz.

В равенстве e w = z положим w=u + iv. Обозначим через г модуль данного комплексного числа z^O, через (р — его главное значение аргумента. Получим

Так как модули левой и правой частей одинаковы, то отсюда е и =/* и = In г. Здесь под правой частью последнего равенства следует понимать обычный натуральный логарифм положительного числа г. Далее из равенства (*) заключаем, что аргументы чисел справа и слева могут отличаться друг от друга только на кратное : v = + 2кл (к eZ). Поэтому множество всех логарифмов описывается формулой

Значение логарифма, равное In | z|+/argz, называют главным значением логарифма и обозначают символом In z. Поэтому вес значения Lnz получаются из главного добавлением кратных 2лi.

Пример, а). Найти Lnz при r = l + i. б). Чему равен Ln(-1) ?

Решение, а). Имеем: | z I = Jl, argz = —. Ответ: In л/2 н—/’ + +2&я/.

Для чисел w,zeC <0>по правилам «в действительной области логарифм произведения равен сумме логарифмов», «в комплексном анализе аргумент произведения равен сумме аргументов» запишем следующие равенства:

Получается, что первое правило распространяется и на комплексную область: Ln(wz) = Lnw+ Lnz. Это равенство надо понимать в следующем смысле: множество, составленное из всевозможных сумм двух слагаемых, одно из которых принадлежит Lnw, а другое Lnz, совпадает с множеством значений Ln(wz).

Итак, мы видим, что логарифмы можно находить не только положительных чисел, как это делается в школе, но и для комплексных чисел. Обнаруживается, что логарифмическая функция (6.7) не однозначная, как это имеет место в действительном анализе, а многозначная: каждое комплексное число, отличное от нуля, имеет бесконечное множество логарифмов. В частности, имеют логарифмы и отрицательные числа, но при этом все они комплексные. Положительные же числа, кроме действительного значения логарифма, рассматриваемого в школьном курсе, имеет еще счетное множество комплексных логарифмов.

Обратимся к дифференцированию комплексного логарифма. Ясно, что достаточно уметь находить производную главного значения (ибо производные от констант — нули). Дифференцируя (по z ) равенство е и = z, получим

е* -м/ = 1 => w = —. Пришли к знакомой формуле из действительного анализа

Заметим, что эта формула верна всюду, где главное значение логарифма непрерывно. Разрывы происходят лишь в точках отрицательной действительной полуоси, ибо в них, как мы видели ранее, разрывно главное значение аргумента вследствие определения его на оговоренном промежутке (-тг,тг].

В действительном анализе имеет место равенство а ь =е Ша . В комплексном анализе пользуются аналогичной формулой, но она выполняет уже роль определения а ь . А именно, полагают

I

Так, при ненулевых а,Ь определена степень с произвольным показателем. Так как логарифм имеет бесконечное множество значений, то и выражение а ь в общем случае — также, но в частных случаях они могут все совпадать (если b — целое число) или среди них может быть только конечное число различных значений (если степень b является рациональным числом).

Рассмотрим, например, V. Согласно (6.8) получим е =е 2 , где п

целое число. Неискушенному этот пример покажется очень удивительным: мнимое число возводится в мнимую степень и получается бесконечно много значений, да еще все они — действительные числа!

Другой пример: найти согласно (6.8) величину / 3 . Ответ

согласуется с перемножением мнимой единицы самой на себя три раза.

J 1 ж. « „ • v, 1, „ 2кт

Вычислим w=8 3 . Имеем: w = e 3 =е 3 •е 3 . Здесь первый

множитель равен 2, а второй принимает лишь три различные значения (например, при к = 0,1,2. Далее начнется повтор).

5. Аркфункции и ареафункции комплексного аргумента.

Аркфункцня (от лат. arcus — дуга) — то же, что обратная тригонометрическая функция, т.е. одна из функций: арксинус, арккосинус, арктангенс, . ; соответствующие обозначения Arc sin z, Arccosz, Arctgz, .

Ареафункция (от лат. area — площадь) — то же, что обратная гиперболическая функция, т.е. одна из функций: ареасинус гиперболический (Arshz)y ареакосинус гиперболический (Arch-), аретангенс гиперболический (Arthz) и т.д.

Эти обозначения, как и предыдущие, не являются общепринятыми, возможны и другие написания рассматриваемых функций. Они, будучи обратными к многолистным функциям (синус, косинус, . ), являются многозначными и выражаются через корни и логарифмы. Найдем такое выражение, например, для арккосинуса — решим при заданном z уравнение cosw=z.

Или, что то же, уравнение — (е ,и +е — ‘") = z как квадратное относительно e ,w .

(мы нс пишем здесь перед корнем обычный знак ± f ибо в комплексном анализе квадратный корень и так имеет два значения). Из последнего равенства получим

Подобным же способом получаются выражения для ареафункций:

Укажем еще группу формул, выражающих ареафункции через арк- функции:

В заключение рассмотрим следующий пример.

При мер. Решить уравнение sinw=2.

Решение. Согласно (6.9) имеем w= Arcsin2 = -iLn <2i + у1 1 -2 2 ). Здесь радикал принимает два значения ± л/З /. Находим логарифм. Так как числа 2 ± -Уз оба положительные, то он равен

Следовательно, w = — + 2лк + i 1п(2 + v’3 , так как (2 ± л/З) ‘=2 + л/3. Читателю рекомендуем сделать проверку. Использовать теорему сложения в виде

и равенство cos iz = chz.

Задачи к главе 6

6.1. Доказать, что число п является основным периодом функции sinz

6.2. Докажите теорему сложения для гиперболического косинуса:

Каков аналог теоремы для гиперболического синуса?

  • 6.3. Верна ли формула ln( zw) = In z + In w ? А формула Ln(z 2 ) = 2Lnz ?
  • 6.4. Доказать, что при возведении комплексного числа а* 0 в иррациональную степень а получается бесконечно много значений и все они лежат на окружности с уравнением | z |=| а а .
  • 6.5. Решить уравнение cosz = 8.

Илья Бирман в заметке о числах π и e написал об их связи со мнимой единицей:

Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:

Почему число 2,7182818284590 в комплексной степени 3,1415926535i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Замечание о небольшой книге верно. Но я собираюсь в одной заметке рассказать, почему , без привлечения пределов и рядов. Сначала я остановлюсь на приближенном выражении для экспоненты, а также напомню, как обращаться с комплексными числами.

Экспоненциальная функция

$$egin[scale=1.0544]small egin[axis line style=gray, samples=120, w >

Экспоненциальная функция среди степенных функций с другими основаниями примечательна тем, что касательная к ее графику в точке идет под углом в 45 градусов. Как видно из рисунка, вблизи точки касания кривую можно заменить самой касательной . Поэтому для очень малых значений x экспоненту легко вычислить по приближенной формуле

Что делать, если показатель экспоненты не является малым числом? Попробуем извлечь корень из e x и сразу же возвести в квадрат: . Показатель экспоненты уменьшился в два раза. Ясно, что если экспоненту разбить на большее количество множителей, показатель уменьшится еще сильнее: e x = (e x/n ) n . Выбираем n очень большим и используем приближение для e x/n :

Чем больше n, тем меньше аргумент экспоненты x/n и тем точнее работает эта формула.

Читайте также:  Телефон флай сброс до заводских настроек

Комплексные числа

Комплексное число — это сумма обычного действительного числа a и мнимого числа bi, где мнимая единица i есть решение уравнения . Правила действий над комплексными числами легко получить, если потребовать, чтобы основные формулы арифметики действительных чисел, такие как возведение в степень и раскрытие скобок, были верны и для комплексных чисел. То есть комплексные числа можно складывать и умножать как обычно, нужно только помнить, что . Например,

У комплексных чисел a + bi есть наглядное графическое представление. Будем считать, что это число задает точку с координатами . Или, что то же самое, вектор, проведенный из начала координат в эту точку. Проекции вектора на оси координат есть a и b. Ясно, что каждому вектору можно сопоставить свою пару чисел , то есть свое комплексное число .

$$egin[semithick,scale=1.0545]small ikzset<>=stealth> def
<2.3>defl <4>defll <l*0.8>defh <0.6>defa <2.4>def <1.8>def <0.07>defp <0.5>draw[->,thin,gray](-h,0)—(l,0); draw[->,thin,gray](0,-h)—(0,ll); draw[red!50!black](0,0)—(a,0) node[midway,below] <$a$>; draw[black!50!green](a,0)—(a,) node[midway,right] <$b$>; draw[->,black!40!blue](0,0)—(a,) node[m >

Представление в виде вектора удобно, когда речь идет о сумме комплексных чисел. Тогда вектор, соответствующий сумме комплексных чисел, равен сумме векторов, соответствующих каждому слагаемому. К сожалению, у произведения комплексных чисел нет такой наглядной картины. Тем не менее, чтобы сформулировать относительно простое правило для представления произведения в виде вектора, перейдем от декартовых координат к полярным координатам r и α. Первое число задает длину вектора и называется модулем комплексного числа, а второе есть угол между вектором и осью абсцисс и называется аргументом. Ясно, что каждая пара этих чисел, r и α, тоже однозначно задает свой вектор и свое комплексное число.

Теперь можно сформулировать правило умножения в терминах длины вектора и его направления (оно выведено в дополнении к заметке). Длина вектора произведения равна произведению длин векторов сомножителей, а аргумент (угол между вектором и осью абсцисс) равен сумме аргументов. Я изобразил это правило на рисунке. Здесь синий вектор равен произведению зеленого и красного.

$$egin[scale=1.0545,semithick,st1/.style=>,st2/.style=>,st3/.style=>] footnotesize ikzset<>=stealth> def
<2.5>def
a <1.3>defaa <48>def
b <1.1>defab <72>def <1.8>def <0.07>defl <
*1.6>draw[gray,thin,->] (-0.5*l,0)—(l,0); draw[gray,thin,->] (0,-0.6)—(0,l); draw[st1](0,0)—(aa:
a*
) node[pos=0.7,left] <$r$>; draw[st2](0,0)—(ab:
b*
) node[pos=0.7,left] <$R$>; draw[st3](0,0)—(aa+ab:
b*
a*
) node[pos=0.6,left] <$rcdot R,$>; defpa <1.2>draw[thin,st1] (pa,0) arc (0:aa:pa) node[m >

Возведение в комплексную степень

В отличие от сложения и умножения, правило возведения в комплексную степень , или хотя бы во мнимую степень x bi , нельзя получить, обобщив обычное правило возведения в действительную степень. Например, 2 i — это результат умножения числа 2 самого на себя «i раз». Непонятно, правда?

Чтобы всё же определить возведение в комплексную степень, нужно привлечь дополнительные принципы или соображения по отношению к правилам арифметики. В качестве такого принципа я предлагаю считать разложение e x ≈ 1 + x около нуля справедливым не только для действительных x, но и для комплексных.

Если это разложение верно, то тогда приближенная формула e x ≈ (1 + x/n) n должна работать и для комплексных чисел. В ее показателе уже нет мнимой единицы, поэтому расчеты можно проводить с помощью выписанных выше правил. Это ровно то, что нам нужно для вычисления e .

Возьмем для примера n = 10 и будем умножать число 1 + /10 само на себя, чтобы получить . К счастью, компьютер большую часть работы делает за нас:

(1 + /10) 1 = 1 + 0,3142i
(1 + /10) 2 = 1 + 2·0,3142i − 0,3142 2 = 0,9013 + 0,6283i
(1 + /10) 3 = 0,7039 + 0,9115i
(1 + /10) 4 = 0,4176 + 1,1326i
(1 + /10) 5 = 0,0617 + 1,2638i
(1 + /10) 6 = −0,3352 + 1,2832i
(1 + /10) 7 = −0,7384 + 1,1779i
(1 + /10) 8 = −1,1085 + 0,9459i
(1 + /10) 9 = −1,4056 + 0,5976i
(1 + /10) 10 = −1,5934 + 0,1561i

Вот эти числа на рисунке:

В соответствии с правилом умножения, аргумент растет как арифметическая прогрессия, а модуль — как геометрическая. К сожалению, из-за небольшого n наша формула слишком неточная, и мы пришли к числу вместо ожидаемого −1. Но зато мы понимаем процедуру, которая при неограниченном росте n даст нужное значение.

Действительно, чем меньше число /n, тем с большей точностью отрезок касательной /n приближает дугу окружности, тем ближе к π/n угол между соседними векторами и тем меньше отклонение длины векторов от 1. В пределе мы получим точки окружности единичного радиуса, а само число попадет в −1. Прямые вычисления это подтверждают:

(1 + /100) 100 = −1,0506 + 0,001085i,
(1 + /1000) 1000 = −1,004946 + 0,00001039i,
(1 + /10000) 10000 = −1,0004936 + 1,03·10 −7 i.

Дополнение 1. Привлечение математической строгости

Я на простых примерах рассказал о том, как ведут себя числа и функции. Математики обычно не используют изложенный выше способ рассуждений, хотя его можно сделать вполне строгим с помощью понятий предела и «о малого».

Но даже если следовать абсолютно строгому математическому пути построения теории, нельзя просто так ввести правило возведения в комплексную степень, без дополнительных определений и аксиом. Разложение e x ≈ 1 + x представляет собой два первых слагаемых в ряде Тейлора (остальными слагаемыми мы пренебрегли, потому что они дадут поправку порядка x 2 , которая несущественна при малых x). В простейшем случае комплексная экспонента определяется как сумма всех слагаемых ряда Тейлора. С использованием такого определения вывод формулы , и ее частного случая, формулы Эйлера, является легким упражнением для изучающих математический анализ.

В более продвинутом курсе теории функций комплексной переменной вводится понятие аналитической функции. Это такая функция f, которая раскладывается в ряд Тейлора, который сходится к самой функции f. (Для того чтобы комплексная функция была аналитической в какой-то области, достаточно, чтобы она была дифференцируемой в этой области. Требование дифференцируемости в комплексном случае гораздо сильнее, чем в действительном. Комплексная дифференцируемая функция в области бесконечно дифференцируема и аналитична на ней.) Оказывается, что аналитическую функцию, определенную для действительных чисел, можно единственным образом продолжить в область комплексных чисел, чтобы функция осталась аналитической. В этом и состоит обоснование выбора определения комплексной экспоненты через ряды: мы специально выбираем экспоненту в виде ряда, чтобы получилась аналитическая функция.

Дополнение 2. Тригонометрическая форма и умножение комплексных чисел

$$egin[semithick,scale=1.0545]small ikzset<>=stealth> def
<2.3>defl <4>defll <l*0.8>defh <0.6>defa <2.4>def <1.8>def <0.07>defp <0.5>draw[->,thin,gray](-h,0)—(l,0); draw[->,thin,gray](0,-h)—(0,ll); draw[red!50!black](0,0)—(a,0) node[midway,below] <$a$>; draw[black!50!green](a,0)—(a,) node[midway,right] <$b$>; draw[->,black!40!blue](0,0)—(a,) node[m >

После перехода от декартовых координат к полярным через последние можно выразить действительную и мнимую часть комплексного числа , которые являются катетами в треугольнике с гипотенузой r и углом α:

Перемножим два комплексных числа в тригонометрической форме:

Вспоминая тригонометрические формулы, видим, что в круглых скобках получились выражения для косинуса и синуса суммы углов. Окончательный ответ имеет вид

Таким образом, модуль произведения комплексных чисел равен произведению модулей сомножителей, а аргумент произведения есть сумма произведений сомножителей.

Дополнение 3. О приближенных методах вычислений

В физике постоянно используются приближенные методы, особенно разложение в ряд Тейлора до первого (изредка до второго) слагаемого. Дело в том, что аналитическое решение в виде формулы можно получить разве что в простейших задачах. Численно, на компьютере, тоже не всякая задача решается. Поэтому часто в ходе преобразований приходится что-нибудь раскладывать и чем-нибудь пренебрегать.

Иногда приближенные методы удается использовать и в арифметических задачах. Прекрасный пример встречается в книге «Вы, конечно, шутите, мистер Фейнман»:

Тут в ресторан вошел японец. Я уже раньше видел его: он бродил по городу, пытаясь продать счеты. Он начал разговаривать с официантами и бросил им вызов, заявив, что может складывать числа быстрее, чем любой из них.

Официанты не хотели потерять лицо, поэтому сказали: «Да, да, конечно. А почему бы Вам не пойти к тому посетителю и не устроить соревнование с ним?»

Читайте также:  Aeg или electrolux что выбрать

Этот человек подошел ко мне. Я попытался сопротивляться: «Я плохо говорю на португальском!»

Официанты засмеялись. «С числами это не имеет значения», — сказали они.

Они принесли мне карандаш и бумагу.

Человек попросил официанта назвать несколько чисел, которые нужно сложить. Он разбил меня наголову, потому что пока я писал числа, он уже складывал их.

Тогда я предложил, чтобы официант написал два одинаковых списка чисел и отдал их нам одновременно. Разница оказалась небольшой. Он опять выиграл у меня приличное время.

Однако японец вошел в раж: он хотел показать, какой он умный. «Multiplicao!» — сказал он.

Кто-то написал задачу. Он снова выиграл у меня, хотя и не так много, потому что я довольно прилично умею умножать.

А потом этот человек сделал ошибку: он предложил деление. Он не понимал одного: чем сложнее задача, тем у меня больше шансов победить.

Нам дали длинную задачу на деление. Ничья.

Это весьма обеспокоило японца, потому что он явно прекрасно умел выполнять арифметические операции с помощью счет, а тут его почти победил какой-то посетитель ресторана.

«Raios cubicos!» — мстительно говорит он. Кубические корни! Он хочет брать кубические корни с помощью арифметики! Трудно найти более сложную фундаментальную задачу в арифметике. Должно быть, это был его конек в упражнениях со счетами.

Он пишет на бумаге число — любое большое число — я до сих пор его помню: 1729,03. Он начинает работать с этим числом и при этом что-то бормочет и ворчит: «Бу-бу-бу-хм-гм-бу-бу», — он трудится как демон! Он просто погружается в этот кубический корень!

Я же тем временем просто сижу на своем месте.

Один из официантов говорит: «Что Вы делаете?»

Я указываю на голову. «Думаю!» — говорю я. Затем пишу на бумаге 12. Еще через какое-то время — 12,002.

Человек со счетами вытирает со лба пот и говорит: «Двенадцать!»

«О, нет! — возражаю я. — Больше цифр! Больше цифр!» Я знаю, что, когда с помощью арифметики берешь кубический корень, то каждая последующая цифра требует большего труда, чем предыдущая. Это работа не из легких.

Он опять уходит в работу и при этом бормочет: «Уф-фыр-хм-уф-хм-гм. ». Я же добавляю еще две цифры. Наконец, он поднимает голову и говорит: «12,0!»

Официанты просто светятся от счастья. Они говорят японцу: «Смотрите! Он делает это в уме, а Вам нужны счеты! И цифр у него больше!»

Он был абсолютно измотан и ушел, побежденный и униженный. Официанты поздравили друг друга.

Каким же образом посетитель выиграл у счетов? Число было 1729,03. Я случайно знал, что в кубическом футе 1728 кубических дюймов, так что было ясно, что ответ немногим больше 12. Излишек же, равный 1,03, — это всего лишь одна часть из почти 2000, а во время курса исчисления я запомнил, что для маленьких дробей излишек кубического корня равен одной трети излишка числа. Так что мне пришлось лишь найти дробь 1/1728, затем умножить полученный результат на 4 (разделить на 3 и умножить на 12). Вот так мне удалось получить целую кучу цифр.

Несколько недель спустя этот человек вошел в бар того отеля, в котором я остановился. Он узнал меня и подошел. «Скажите мне, — спросил он, — как Вам удалось так быстро решить задачу с кубическим корнем?»

Я начал объяснять, что использовал приближенный метод, и мне достаточно было определить процент ошибки. «Допустим, Вы дали мне число 28. Кубический корень из 27 равен 3. »

Он берет счеты: жжжжжжжжжжжжжжжж — «Да», — соглашается он.

И тут до меня доходит: он не знает чисел. Когда у тебя есть счеты, не нужно запоминать множество арифметических комбинаций; нужно просто научится щелкать костяшками вверх-вниз. Нет необходимости запоминать, что 9 + 7 = 16; ты просто знаешь, что когда прибавляешь 9, то нужно передвинуть десятичную костяшку вверх, а единичную — вниз. Поэтому основные арифметические действия мы выполняем медленнее, зато мы знаем числа.

Более того, сама идея о приближенном методе вычисления была за пределами его понимания, несмотря на то, что зачастую невозможно найти метод точного вычисления кубического корня. Поэтому мне так и не удалось научить его брать кубический корень или объяснить, как мне повезло, что он выбрал число 1729,03.

Фейнман использовал ряд Тейлора для степенной функции, который для кубического корня выглядит как $$sqrt[3]<1+x>=1+x/3+ldots$$ Вот вся последовательность вычислений:

В этом приближенном ответе благодаря малости числа 1,03/1728 по сравнению с единицей все цифры точные, расхождение с правильным ответом начинается в шестом знаке после запятой. Самая сложная операция в приведенной цепочке — вычисление дроби 1,03/432.

Показательная и тригонометрическая функции в области КЧ связаны между собой формулой:

Пусть КЧ Z в тригонометрической форме имеет вид Z= r (cosq+isinq). Тогда из (1) следует, что z= re iq – показательная форма записи КЧ.

r= |z|= =; q=argz=

z= -показательная форма записи КЧ.

С помощью ф. Эйлера можно определить показательную функцию комплексного аргумента.

Пусть z=x+iy, тогда Любой пример.

Заменим в (1) q на –q. Получим: . Отсюда cosq=.

Аналогично, sinq=. (Любой пример)

Действия над КЧ в показательной форме

Произведение 2-ух КЧ z1=x1+iy1 , z2=x2+iy2 равно z1z2=y1* y2= y1y2=y1y2.

Деление ==

Возведение в целую положительную степень — ф. Муавра

Извлечение корня n-степени

42. Функция, область определения функции, график функции, способы задания. Понятие неявной, обратной, сложной функции.

Опр: Пусть заданы 2 непустых множества X и Y. Если каждому элементу х€Х по правилу f соответствует единственное значение у€У, то говорят, что на множестве Х задана функция f со множеством значений У.

у- зависимая переменная, функция

Х=D(f)- область определения-все те значения х, при которых сосчитана функция

У= Е(f)- область значений

Опр: Графиком функции у=f(x)называют множество точек плоскости Оху с координатами (х, f(x)), где х€D(f)

аналитический явно у=f(x)

Опр: Если у зависит от U, а U зависит от х, то у зависит от х, и называется сложной функцией.

Опр: Функция у=f(x) называется обратимой на Х, если ))

Опр: Пусть у=f(x) – обратимая функция на Х

Выразим из формулы у=f(x) переменную х, получим х=

Заменив у на х , х на у, имеем у=f -1 (x)

43. Основные элементарные функции, их свойства и графики

Опр: Функция, заданная формулой у=а х , где а>0, аназывается показательной функцией с основанием а.

При а=1 имеем график прямой линии, параллельной Ох.

Свойства: D(y)=

E(y)=

монотонна: возрастает при а>1,

неограниченная, непрерывная, непериодическая

Опр: Функция у=, где а>0, а, называется логарифмической. Эта функция является обратной к показательной функции; ее график может быть получен поворотом графика у=а х вокруг биссектрисы 1 координатного угла.

Свойства: D(y)=

монотонна: возрастает при а>1

неограниченная, непрерывная, непериодическая

Опр: Функция, заданная формулой у=х α , называется степенной функцией, где α-постоянная.

При α=1 получаем прямую, при α=2-квадратную параболу, при α=-1-гиперболу, при α=3-кубическую параболу.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *