Реферат: Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях. Аппроксимация нелинейных характеристик Аппроксимация характеристик нелинейных элементов

При исследовании свойств электрических цепей явлением гистерезиса, как правило, можно пренебречь. Лишь при исследовании цепей, в основе действия которых лежит это явление (например, работы запоминающих магнитных устройств с прямоугольной петлей гистерезиса), гистерезис необходимо учитывать.

На рис. 15.11, а изображена типичная симметричная характеристика у = f(x).

Для нелинейной индуктивности роль х играет мгновенное значение индукции роль у - мгновенное значение напряженности поля Н. Для нелинейного конденсатора у - это напряжение - заряд q. Для нелинейных резисторов (например, тиритовых сопротивлений) роль х играет напряжение, у - ток.

Существует большое число различных аналитических выражений, в той или иной мере пригодных для аналитического описания характеристик нелинейных элементов . При выборе наиболее подходящего аналитического выражения для функции у = f(x) исходят не только из того, что кривая, описываемая аналитическим выражением, должна достаточно близко всеми своими точками расположиться к опытным путем полученной кривой в предполагаемом диапазоне перемещений рабочей точки на ней, но учитывают и те возможности, которые выбранное аналитическое выражение дает при анализе свойств электрических цепей.

В дальнейшем для аналитического описания симметричных характеристик по типу рис. 15.11, а будем пользоваться гиперболическим синусом:

В этом выражении - числовые коэффициенты; а выражается в тех единицах, что - в единицах, обратных единицам так что произведение есть величина безразмерная. Для определения неизвестных коэффициентов следует на полученной опытным путем зависимости у = f(x) в предполагаемом рабочем диапазоне произвольно выбрать две наиболее характерные точки, через которые должна пройти аналитическая кривая, подставить координаты этих точек в уравнение (15.1) и затем решить систему из двух уравнений с двумя неизвестными.

Пусть координаты этих точек (рис. 15.11, а). Тогда

Отношение

Трансцендентное уравнение (15.2) служит для определения коэффициента . Следовательно,

Пример 147. Кривая намагничивания трансформаторной стали изображена на рис. 15.11, б. Найти коэффициенты а и .

Решение. Выбираем две точки на кривой:

По уравнению (15.2) имеем Задаемся произвольными значениями и производим подсчеты:

По результатам подсчетов строим кривую и по ней находим . Далее определяем

Пунктирная кривая на рис. 15.11, б построена по уравнению . § 15.14. Понятие о функциях Бесселя. При анализе нелинейных цепей широко используют функции Бесселя, которые являются решением уравнения Бесселя

Функции Бесселя выражают степенными рядами и для них составлены таблицы. Функцию Бесселя от аргумента обозначают , где - порядок функции Бесселя. Общее выражение для в виде степенного ряда можно записать так:

Таблица 15.1

Академия России

Кафедра Физики

Реферат на тему:

«АППРОКСИМАЦИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ И АНАЛИЗ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКИХ ВОЗДЕЙСТВИЯХ»


Учебные вопросы

1. Аппроксимация характеристик нелинейных элементов

2. Графо-аналитический и аналитический методы анализа

3. Анализ цепей методом угла отсечки

4. Воздействие двух гармонических колебаний на безынерционный

нелинейный элемент

Литература


Вступление

Для всех рассмотренных ранее линейных цепей справедлив принцип суперпозиции, из которого вытекает простое и важное следствие: гармонический сигнал, проходя через линейную стационарную систему, остается неизменным по форме, приобретая лишь другие амплитуду и начальную фазу. Именно поэтому линейная стационарная цепь не способна обогатить спектральный состав входного колебания.

Особенностью НЭ, по сравнению с линейными, является зависимость параметров НЭ от величины приложенного напряжения или силы протекающего тока. Поэтому на практике при анализе сложных нелинейных цепей пользуются различными приближенными методами (например, заменяют нелинейную цепь линейной в области малых изменений входного сигнала и используют линейные методы анализа) или ограничиваются качественными выводами.

Важным свойством нелинейных электрических цепей является возможность обогащения спектра выходного сигнала. Эта важная особенность используется при построении модуляторов, преобразователей частоты, детекторов и т. д.

Решение многих задач, связанных с анализом и синтезом радиотехнических устройств и цепей, требует знания процессов, происходящих при одновременном воздействии на нелинейный элемент двух гармонических сигналов. Это связано с необходимостью перемножения двух сигналов при реализации таких устройств, как преобразователи частоты, модуляторы, демодуляторы и т. д. Естественно, что спектральный состав выходного тока НЭ при бигармоническом воздействии будет гораздо богаче, чем при моногармоническом.

Нередко возникает ситуация, когда один из двух воздействующих на НЭ сигналов мал по амплитуде. Анализ в этом случае значительно упрощается. Можно считать, что по отношению к малому сигналу НЭ является линейным, но с переменным параметром (в данном случае крутизной ВАХ). Такой режим работы НЭ называется параметрическим.


1. Аппроксимация характеристик нелинейных элементов

При анализе нелинейных цепей (НЦ) обычно не рассматривают процессы, происходящие внутри элементов, составляющих эту цепь, а ограничиваются лишь внешними их характеристиками. Обычно это зависимость выходного тока от приложенного входного напряжения

, (1)

которую принято называть вольт-амперной характеристикой (ВАХ).

Самое простое – использовать имеющуюся табличную форму ВАХ для численных расчетов. Если же анализ цепи должен проводиться аналитическими методами, то возникает задача подбора такого математического выражения, которое отражало бы все важнейшие особенности экспериментально снятой характеристики.

Это не что иное, как задача аппроксимации. При этом выбор аппроксимирующего выражения определяется как характером нелинейности, так и используемыми расчетными методами.

Реальные характеристики имеют достаточно сложный вид. Это затрудняет их точное математическое описание. Кроме того, табличная форма представления ВАХ делает характеристики дискретными. В промежутках между этими точками значения ВАХ неизвестны. Прежде чем переходить к аппроксимации, необходимо как-то определиться с неизвестными значениями ВАХ, сделать ее непрерывной. Тут возникает задача интерполяции (от лат. inter – между, polio – приглаживаю) – это отыскание промежуточных значений функции по некоторым известным ее значениям. Например, отыскание значений

в точках лежащих между точками по известным значениям . Если , то аналогичная процедура носит задачи экстраполяции.

Обычно аппроксимируют лишь ту часть характеристики, которая является рабочей областью, т. е. в пределах изменения амплитуды входного сигнала.

При аппроксимации вольт-амперных характеристик необходимо решить две задачи: выбрать определенную аппроксимирующую функцию и определить соответствующие коэффициенты. Функция должна быть простой и в то же время достаточно точно передавать аппроксимируемую характеристику. Определение коэффициентов аппроксимирующих функций осуществляется методами интерполяции, среднеквадратичного или равномерного приближения, которые рассматриваются в математике.

Математически постановка задачи интерполяции может быть сформулирована следующим образом.

Найти многочлен

степени не больше n такой, что i = 0, 1, …, n , если известны значения исходной функции в фиксированных точках , i = 0, 1, …, n . Доказывается, что всегда существует только один интерполяционный многочлен, который может быть представлен в различных формах, например в форме Лагранжа или Ньютона. (Рассмотреть самостоятельно на самоподготовке по рекомендованной литературе).

Аппроксимация степенными полиномами и кусочно-линейная

Она основана на использовании хорошо известных из курса высшей математики рядов Тейлора и Маклорена и заключается в разложении нелинейной ВАХ

в бесконечномерный ряд, сходящийся в некоторой окрестности рабочей точки . Поскольку такой ряд физически не реализуем, приходится ограничивать число членов ряда, исходя из требуемой точности. Степенная аппроксимация применяется при относительно малом изменении амплитуды воздействия относительно .

Рассмотрим типичную форму ВАХ любого НЭ (рис. 1).

Напряжение

определяет положение рабочей точки и, следовательно, статический режим работы НЭ.

Рис. 1. Пример типичной ВАХ НЭ

Обычно аппроксимируется не вся характеристика НЭ, а лишь рабочая область, размер которой определяется амплитудой входного сигнала, а положение на характеристике – величиной постоянного смещения

. Аппроксимирующий полином записывается в виде , (2)

где коэффициенты

определяются выражениями .

Аппроксимация степенным полиномом заключается в нахождении коэффициентов ряда

. При заданной форме ВАХ эти коэффициенты существенно зависят от выбора рабочей точки , а также от ширины используемого участка характеристики. В этой связи целесообразно рассмотреть некоторые наиболее типичные и важные для практики случаи.

1. Рабочая точка расположена на середине линейного участка (рис. 2).

Рис. 2. Рабочая точка ВАХ – на середине линейного участка

Участок на характеристике, где закон изменения тока близок к линейному, относительно неширок, поэтому амплитуда входного напряжения

не должна выходить за пределы этого участка. В этом случае можно записать: , (3) – ток покоя; ; – дифференциальная крутизна характеристики.

Этот случай применим только при слабом сигнале

Часто необходимо иметь аналитические выражения для вольт - амперных характеристик нелинейных элементов. Эти выражения могут лишь приближенно представлять ВАХ, поскольку физиче­ские закономерности, которым подчиняются зависимости между напряжениями и токами в нелинейных при­борах, не выражаются аналитически.

Задача приближенного аналитического представления функции, заданной графически или таблицей значений, в заданных пределах изменения ее аргумента (независимой переменной) называется аппроксимацией. При этом во-первых, делается выбор аппроксимирующей функции, т. е. функции, с помощью которой приближенно представляется заданная зависи­мость, и, во-вторых, выбор критерия оценки «близости» этой зави­симости и аппроксимирующей ее функции.

В качестве аппроксимирующих функций используются, чаще всего, алгебраические полиномы, некоторые дробные рациональ­ные, экспоненциальные и трансцендентные функции или совокупность линейных функций (отрезков пря­мых линий).

Будем считать, что ВАХ нелинейного элемента i = fun(u) задана графически, т. е. определена в каждой точке интервала U min и U max , и представляет собой однозначную непрерывную функцию переменной и. Тогда задача аналитического представления вольт-амперной характеристики может рассматриваться как задача ап­проксимации заданной функции ξ(х) выбранной аппроксимирую­щей функцией f (x ).

О близости аппроксимирующей f (x )и аппроксимируемой ξ(х )функций или, иными словами, о погрешности аппроксимации, обычно судят по наибольшему абсолютному значению разности между этими функциями в интервале аппроксимации а х b, т. е. по величине

Δ= max‌‌│ f (x )- ξ(x )│

Часто критерием близости выбирается среднее квадратичное значение разности между указанными функциями в интервале ап­проксимации.

Иногда под близостью двух функций f(x )и ξ(x ) понимают сов­падение в заданной точке

x = Хо самих функций и п + 1 их произ­водных.

Наиболее распространенным способом приближения аналитической функции к заданной является интерполяция (метод выбран­ных точек), когда добиваются совпадения функций f(x )и ξ(x ) в выбранных точках (узлах интерполяции) X k , k = 0, 1, 2, ..., п.

Погрешность аппроксимации может быть достигнута тем мень­шей, чем больше число варьируемых параметров входит в аппрок­симирующую функцию, т. е., например, чем выше степень аппрок­симирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция. Одно­временно с этим, естественно, растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи. Простота этого анализа наряду с особенностями аппроксимируемой функции в пределах интервала аппроксимации служит одним из важнейших критериев при выборе типа аппрок­симирующей функции.

В задачах аппроксимации вольт-амперных характеристик элек­тронных и полупроводниковых приборов стремиться к высокой точности их воспроизведения, как правило, нет необходимости ввиду значительного разброса характеристик приборов от образца к образцу и существенного влияния на них дестабилизирующих факторов, например, температуры в полупроводниковых приборах. В большинстве случаев достаточно «правильно» воспроизвести об­щий усредненный характер зависимости i = f (u )в пределах ее ра­бочего интервала. Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем на этой основе формируются справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции.

Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.

Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:

Из этой системы находятся коэффициенты а 0 , а 1 , а 2 , …, а n .

В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).

Можно использовать экспоненциальный полином:

Второй метод: метод аппроксимации по Тейлору . В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.

Аппроксимация по Батерворту : выбирается простейший полином:

В этом случае можно определить максимальное отклонение ε на краях диапазона.

Аппроксимация по Чебышеву : является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наиболь­шее по абсолютной величине отклонение полинома f (x )степени п от непрерывной функции ξ(х ) будет минимально возможным, если в интервале приближения а х b разность

f(x ) - ξ(х ) не мень­ше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f (x ) - ξ(х ) = L > 0 и наименьшие f (x ) - ξ(х ) = -L значения (критерий Чебышева).

Во многих прикладных задачах находит применение полиноми­альная аппроксимация по среднеквадратическому критерию близо­сти, когда параметры аппроксимирующей функции f (x ) выбирают­ся из условия обращения в минимум в интервале аппроксимации а х b квадрата отклонения функции f (x ) от заданной непре­рывной функции ξ(х ), т. е., из условия:

Λ= 1/b-a∫ a [f (x )- ξ(x )] 2 dx = min . (7)

В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов a k аппроксимирующего полинома f (x ), т. е. уравнений

дΛ ∕дa 0 =0; дΛ ∕дa 1 =0; дΛ ∕дa 2 =0, . . . , дΛ ∕дa n =0. (8)

Доказано, что и эта система уравнений имеет единственное ре­шение. В простейших случаях оно находится аналитически, а в общем случае - численно.

Чебышев установил, что должно для максимальных отклонений выполняться равенство:

В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.

В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.

Во многих прикладных задачах анализа колебаний в нелиней­ных резистивных цепях аппроксимируемая вольт - амперная харак­теристика в интервале аппроксимации с достаточной точностью пред­ставляется двумя или тремя отрезками прямых.

Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нели­нейной резистивной цепи при «небольших» по величине воздействи­ях на нелинейный элемент, т. е. ко­гда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = I мах

ЛЕКЦИЯ № 16

АППРОКСИМАЦИЯ ВАХ НЕЛИНЕЙНЫХ ЭЛЕМЕНТОВ. МЕТОДЫ РАСЧЕТА НЕДИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Учебные вопросы

1. Аппроксимация ВАХ нелинейных элементов. Полиномиальная аппроксимация.

2. Кусочно-линейная аппроксимация.

3. Классификация методов анализа нелинейных цепей.

4. Аналитические и численные методы анализа нелинейных цепей постоянного тока.

7. Ток в нелинейном резисторе при воздействии синусоидального напряжения.

8. Основные преобразования, осуществляемые с помощью нелинейных электрических цепей переменного тока.

1. Аппроксимация вольт-амперных характеристик нелинейных элементов

Вольт-амперные характеристики реальных элементов электрических цепей обычно имеют сложный вид и представляются в виде графиков или таблиц экспериментальных данных. В ряде случаев непосредственное применение ВАХ, задаваемых в такой форме, оказывается неудобным и их стремятся описать с помощью достаточно простых аналитических соотношений, качественно отражающих характер рассматриваемых ВАХ.

Замена сложных функций приближенными аналитическими выражениями называется аппроксимацией .

Аналитические выражения, аппроксимирующие ВАХ нелинейных резистивных элементов, должны как можно более точно описывать ход реальных характеристик.

Следовательно, задача аппроксимации ВАХ включает в себя две самостоятельные задачи:

1) выбор аппроксимирующей функции;

2) определение значений входящих в эту функцию постоянных коэффициентов наиболее часто используются два вида аппроксимации ВАХ нелинейных элементов:

Полиномиальная;

Кусочно-линейная.

1.1. Полиномиальная аппроксимация

Аппроксимация степенным полиномом выполняется на основе формулы ряда Тейлора для ВАХ НЭ:

т.е. ВАХ в данном случае должна быть непрерывной, однозначной и абсолютно гладкой (должна иметь производные любого порядка).

В практических расчетах обычно ВАХ не дифференцируют, а требуют, например, чтобы аппроксимирующая кривя (16.5) прошла через заданные токи.

В так называемом методе трех точек необходимо, чтобы некоторые три точки ВАХ:

(i 1 , u 1), (i 2 , u 2), (i 3 , u 3) – отвечали номиналу (16.5) (рис.16.9).

Из уравнений

несложно найти искомые коэффициенты a 0 , a 1 , a 2 , поскольку относительно их система (16.6) линейна.

Если ВАХ сильно изрезана и требуется отразить ее особенности, необходимо учитывать большее число точек ВАХ. Система типа (16.6) становится сложной, однако ее решение может быть найдено по формуле Лагранжа, определяющей уравнение полинома, проходящего через n точек:

(16.7)

где A k (u ) = (u u 1) ... (u u k-1) (u u k+1) ... (u u n).

Пример . Пусть нелинейный элемент имеет ВАХ, заданную графически (рис.16.10).

Требуется аппроксимировать ВАХ ИЭ степенным полиномом.

На графике ВАХ выделяются четыре точки с координатами:

На основании формулы Лагранжа (16.7) получим




Таким образом, аппроксимирующая функция имеет вид

и нэ = -6,7i 3 + 30i 2 – 13,3i .

2. Кусочно-линейная аппроксимация

При кусочно-линейной аппроксимации ВАХ НЭ аппроксимируетсясовокупностью линейных участков (кусков) вблизи возможных рабочих точек.

Пример . Для двух участков нелинейной ВАХ (рис.16.11) получим:

Пример . Пусть требуется линеаризировать участок ВАХ между токамиА иВ , который используется в качестве рабочей области около рабочей точкиР (рис.16.12).

Тогда уравнение линеаризированного участка ВАХ вблизи рабочей точки Р будет

Очевидно, что аналитическая аппроксимация ВАХ верна только для выбранного участка линеаризации.

Как указывалось ранее, удобными характеристиками нелинейных элементов являются не уравнения связи, а вольтамперная характеристика активного сопротивления
или
, или зависимость
- для нелинейной индуктивности (ампервеберная характеристика), или зависимостьq(u) – для нелинейной емкости (вольткулонная характеристика) (рис.3.8).

Рис.3.8. Виды характеристик нелинейных элементов

Однако, графическая форма характеристик нелинейных элементов (рис.3.8.) не позволяет использовать зависимости (3.1-3.15), для составления уравнений работы схем с нелинейными элементами. Поэтому одной из важнейших задач, которая возникает при анализе колебаний в схемах, содержащих нелинейные элементы, состоит в аппроксимации нелинейных характеристик. Наибольшее распространение аппроксимаций нелинейных характеристик получили полиномиальная и кусочно-линейная, а также аппроксимация с помощью различных видов трансцендентных функций.

При анализе нелинейных схем возможность получить правильный результат существенно зависит как от правильности выбора метода аппроксимации, так и от выражения аппроксимирующей функции нелинейного элемента. Возникает определенное противоречие – чем точнее аппроксимация нелинейного элемента, тем сложнее получить нужное аналитическое выражение характеристики нелинейного элемента. Но кроме этого, сложнее построить и решение нелинейного уравнения, описываюшего колебания в такой нелинейной системе, с помощью выбранного выражения аппроксимирующей функции. Поэтому правильный выбор аппроксимации нелинейной характеристики позволяет существенно упростить построение решения нелинейного уравнения. Кроме того необходимо отметить, что очень часто одну и ту же характеристику нелинейного элемента приходится по-разному аппроксимировать в зависимости от того, в каких условиях работает нелинейный элемент и какие вопросы должны быть исследованы. Поэтому, способы аппроксимации выбирают в каждом конкретном случае исследования колебаний в схемах с нелинейными элементами различными.

Рассмотрим способы аппроксимации различных функций нелинейных элементов. К наиболее распространенным способам аппроксимации нелинейных элементов относят следующие:

    полиномиальная аппроксимация ─ представление нелинейной характеристики с помощью степенного ряда,

    кусочно-линейная аппроксимация ─ представление аппроксимируемой функции отрезками прямых линий,

    аппроксимация с помощью различных видов трансцендентных функций.

Полиномиальная аппроксимация. Если любая из нелинейных характеристик задана аналитическим выражением, то в окрестности рабочей точки функция может быть представлена разложением в ряд Тейлора (
в окрестности точки х 0)

, (3.16)

где R – остаток в разложении в ряд Тейлора, которым пренебрегают при аппроксимации.

Если же характеристика задана графически (рис.3.9), то аппроксимацию можно осуществить укороченным степенным рядом (полином), ограничивая его второй - пятой степенью

Рис.3.9. Графическое представление нелинейной характеристики

Для определения коэффициентов а k требуем, чтобы при значениях переменной x k в левой части полинома (3.17) получались значения функции y k .

Составляем систему уравнений:

, где
. (3.18)

В этой системе уравнений y n , у 0 , x n , x 0 – известные величины, поэтому эту систему можно решить по методу Крамера, относительно коэффициентов a k .

Если x=x 0 +S (х 0 постоянное смещение, а S малый сигнал), то

где α – дифференциальный параметр нелинейного элемента. Таким образом, можно отметить, что первый коэффициент a 1 полиномиальной аппроксимации нелинейной характеристики (3.17) совпадает с дифференциальным параметром нелинейного элемента. Кроме того отметим, что если х=0 лежит внутри интервала (х 5 -х 1) аппроксимации нелинейной характеристики полиномом, то коэффициент а 0 определяет значение функции в начале координат (т.е. если мы рассматриваем в качестве нелинейной характеристики i=φ(u), то коэффициент а 0 =i(0) определяется как значение тока при u=0.

Кусочно-линейная аппроксимация. Кусочно-линейная аппроксимация основана на замене реальной характеристики нелинейного элемента отдельными участками, которые заменяются отрезками прямых линий (рис.3.10).

Рис.3.10. Кусочно-линейная аппроксимация нелинейного элемента

Точность кусочно-линейного приближения зависит от количества интервалов, заменяемых отрезками прямых в заданном интервале использования кусочно-линейной аппроксимации. Чем на большее количество отрезков прямых разбит интервал, для которого мы применяем кусочно-линейное приближение, тем выше точность совпадения с реальной нелинейной характеристикой, но при этом сушественно усложняется анализ колебаний в такой системе. Для упрощения расчетов желательно ограничиваться минимальным количеством отрезков прямых, замещающих нелинейную характеристику. Например, динамическую проходную характеристику триода (рис.3.10) можно аппроксимировать с достаточной степенью точности всего лишь тремя отрезками прямых линий:

. (3.20)

Замена нелинейных участков характеристик нелинейных элементов отрезками прямых, прозволяет считать и сами характеристики линейными, а это значит, что применимы теперь все методы линейной теории цепей. На протяжении линейных участков нелинейные элементы заменяются на линейные, с характеристиками равными их дифференциальным величинам.

Аппроксимация нелинейных характеристик с помощью трансцендентных функций. Иногда характеристики нелинейных элементов аппроксимируют трансцендентными функциями рис.3.11. В качестве аппроксимирующих трансцендентных функций применяются экспоненты и их суммы, тригонометрические, обратные тригонометрические, гиперболические и другие функции. Например,

или
. (3.21)

Рис.3.11. Примеры аппроксимации нелинейных характеристик

трансцендентными функциями

Публикации по теме