Частотный спектр функции уолша. Преобразование уолша и его применение для обработки сигналов. Прямые каналы в CDMA

Базисная тригонометрическая ф-я описывается:- номер гармоники.

Интервал ортогональности. При нормировке по мощности базисная ф-ия:Ω=2π\T

;

;
;
;

, A i -амплитуда гармоник, Θ i -фаза

;


2. Разложение сигналов и помех по функциям Уолша.

Ф-ии Уолша складываются из ф-ий Радемахера
,k=1,2...;

sgn– знаковая функция.

Интервал -разбивается на 2 k интервалы ∆T. В них ф-я Радемахера принимает значения “+1” и ”–1”. (Ф-я сохраняет свою ортогональность.)wal 0 =1 – функ-я Уолша “0” порядка 1.

Получение ф-ии walболее высоких порядков (k=1,2,3…):

1)Записывают число kв двоичной системе в

прямом коде.

m-число разрядов кода необходимых для представления ф-ий Уолшаk-го порядка, γ i -весовой коэффициент, имеющий значения 1 или 0 (в зависимости от того, учитывается или нет данный разряд при суммировании).

2)Число kперекодируют по правилу кода Грэя., код комбинации складывают поmod2 с той же комбинацией сдвинутой на 1 разряд вправо. При этом младший разряд откидывают, полученный код называют кодом Уолша.

3) Представление ф. Уолша в ряд Родомахера:

Это правило показывает, что ф. Уолша получается перемножением ф-ии Родомахера в определенной комбинации с коэффициентом b i . Для 4kф. Уолша строим:

для этой системы характерны расположения ф-ий в порядке возрастания

числа переменных знака на интервале . В этой системе четные

относительно середины интервала чередуются с нечетными при этом

число перемен знака на интервале для четных ф-ий число

перемен знака m/2 и для нечетных (m+1)/2.

-ф. Уолша в ортогональной системе.

3. Геометрическое представление сигналов и помех.

Математический объект A i является элементом множества А 1 .

ifнад объектомA i можно произвести линейные операции то множество А 1 принадлежит линейному пространству, а его элементыA i являются точками этого пространства.

Пространство имеет любую размерность m.

Ifв таком пространстве определено расстояние м/у точкамиA i и A j то пространство - метрическое, а расстояние м/у началом координат и какой-либо точкой - норма, а пространство нормированное. Соответственно норму и расстояние можно определить. В линейном нормированном пространстве определена норма в виде
и расстояние
-пространство называется Евклидовым.ifn→∞ - Гильбертово пространство.A i – вектор, его длина – норма.

Тогда колебанию U i (t) можно сопоставить точкуA i или вектор вn-мерном пространстве размерность которого равна числу степеней свободы колебанияu(t). Пусть колебанияu a (t) иu b (t) разлагаются по ортогональной системе функций φ i (t).
,
Этим колебаниям будут соответствовать вектора
с координатами
. Их длинна

. Приняв во внимание условие ортогональности, а точнее ортонормальности. Длина и норма совпадают.


P a иP b -средняя удельная мощность колебания. Длинна вектора вn-мерном пространстве, определяется эффективным значением соответствующего колебания

-Характеризует степень близости. Расстояние можно рассматривать как модуль разности
, чем меньше эта величина тем меньше различия м/у колебаниями.

* - среднее значение произведения колебаний.
**-эффективное взаимодействие м/у колебаниямиu a иu b .взаимная мощность колебаний-P ab .Ifвзять в качестве базисной ф-ии
, то выражения * и ** совпадут.ifu a иu b ортогональны =0.If U a =–U b тогда P ab = – P a = – P b . Сигнал и помеху можно представить как вектор. При геометрическом представлении кодированных сигналов. Широкоusen-мерное пространство в Неевклидовой метрике. Расстояние в этом пространстве определяется по алгоритму
,n- число элементов комбинации данного кода, аx i иy i –значения соответствующих разрядов. Геометрической модельюn- значного двоичного кода являетсяn-мерный куб с ребром = 1, каждая из вершин которого представляет одну из возможных комбинаций. 000,001,010,100,101,110,011,111 Расстояние -. Кодированный сигнал в видеn-мерного куба.

    Доказать, что коэффициенты ряда Котельникова s (t ), это значения сигнала в моменты времени t =nT д.

    Доказать, что функции отсчетов sinc(t -nT д) и sinc(t -mT д) ортогональны при n ¹m .

    Определите спектральную плотность импульса, заданного аналитическим выражением s (t )=sinc(t -nT д).

    Почему невозможно существование функции, описывающей сигнал, ограниченный во времени и имеющий ограниченный частотный спектр?

9. Представление сигналов функциями Уолша

В 1923 г. американским математиком Уолшем (Walsh J.L.) были введены и изучены функции, носящие его имя. Дискретные сигналы на основе функций Уолша (ФУ) представляют собой полную систему ортогональных функций типа прямоугольной волны. Область применения функций Уолша, достаточно обширная в настоящее время, постоянно расширяется.

Функции Уолша графически могут быть изображены различными способами. Однако на интервале своего определения они принимают только два значения: +1 и –1. При использовании ФУ обычно вводят безразмерное время, так что.

На рис. 9.1 представлены первые 8 функций Уолша (прямоугольных волн) на интервале значений аргумента.

Рис. 9.1. Функции Уолша, упорядоченные и пронумерованные в соответствии с количеством перемен знака на интервале .

Принятое обозначение wal k (q) связано с написанием фамилии Walsh. Индекс k указывает на число перемен знаков (число пересечений нулевого уровня) функцией на интервале определения. Поэтому половину значения k иначе называют частостью колебания wal k (q). Область существования ФУ характеризуется размером базиса , гдеn =1,2,3,.… На рис. 9.1 размер базиса .

Функции Уолша ортонормированы на интервале :

Функции Уолша обладают свойством мультипликативности, т.е. перемножение двух ФУ дает другую ФУ, при этом

где операция обозначает поразрядное суммирование по модулю 2 по правилам:

1Å1=0; 0Å0=0; 1Å0=1; 0Å1=1.

Умножение ФУ самой на себя дает функцию нулевого порядка , так как в результате получаются только произведения видаи. Таким образом,

Умножение любой ФУ на функцию нулевого порядка, т.е.

не изменяет первой функции. В этом смысле ФУ играет роль своеобразной «единичной» функции.

Естественно, что полная ортонормированная система функций Уолша позволяет представлять любые сигналы рядами Уолша–Фурье.

.

Процедура нахождения амплитуды каждой «прямоугольной гармоники» ряда Уолша–Фурье весьма проста: при известном сигнале s (t ) для k -той «гармоники» коэффициентопределяется по формуле

.

Пример: разложить в ряд Уолша–Фурье функцию на интервале, ограничившись восемью членами разложения (базис).

Переходя к безразмерному времени следует обозначить. Поскольку заданная функцияs (t ) нечетная относительно , а все функции Уолша с четными индексами, включая нуль, четные рис. 9.1, то произведения, гдебудут нечетными функциями и, следовательно, интеграл от этих произведений равен нулю: с 0 =с 2 =с 4 =с 6 =0.

Теперь вычислим коэффициенты и:

Коэффициент равен:

,

где обозначено , а.

Проделав несложные выкладки можно получить

Таким образом, разложение синусоидального колебания s (t ) в базисе функций Уолша с N =8 имеет две ненулевые спектральные составляющие с амплитудами и

.

Результат аппроксимации сигнала усеченным рядом функциям Уолша и спектр этого сигнала в базисе функций Уолша представлен на рис. 9.2,а и б соответственно.

Рис. 9.2. Представление сигнала разложением по ортогональному базису функций Уолша

Среднеквадратическая ошибка представления сигнала усеченным рядомпо функциям Уолша составляет

Разумеется, разложение синусоиды в ряд Фурье по тригонометрическим функциям дает лучшую точность. Стопроцентная точность обеспечивается рядом, содержащим всего один член . Но разложение прямоугольной меандровой функции, такой как wal 1 (q), в ряд Фурье

при удержании всего двух членов ряда обеспечивает гораздо худшую точность по среднеквадратической ошибке, а именно, как следует из, . Естественно, что спектр прямоугольной функции по функциям Уолша будет содержать только одну составляющую и представлять ею исходную функцию совершенно точно.

Этот пример иллюстрирует тот факт, что для каждого конкретного типа сигналов всегда есть такая базисная система, разложение по которой дает максимально компактное представление этого сигнала при заданной точности (или максимально точное представление при заданном числе членов разложения).

Функции Уолша достаточно просто генерируются цифровыми системами формирования и обработки сигнала, выполненными на современной элементной базе.

Функциями Уолша называется семейство функций, образующих ортогональную систему, принимающих значения только 1 и −1 на всей области определения.

В принципе, функции Уолша могут быть представлены в непрерывной форме, но чаще их определяют как дискретные последовательности из элементов. Группа из функций Уолша образует матрицу Адамара.

Функции Уолша получили широкое распространение в радиосвязи, где с их помощью осуществляется кодовое разделение каналов (CDMA), например, в таких стандартах сотовой связи, как IS-95, CDMA2000 или UMTS.

Система функций Уолша является ортонормированным базисом и, как следствие, позволяет раскладывать сигналы произвольной формы в обобщённый ряд Фурье.

Преобразование Уолша-Адамара

Является частным случаем обобщённого преобразования Фурье, в котором базисом выступает система функций Уолша.

Обобщённый ряд Фурье представляется формулой:

где это одна из базисных функций, а - коэффициент.

Разложение сигнала по функциям Уолша имеет вид:

В дискретной форме формула запишется следующим образом:

Определить коэффициенты можно, осуществив скалярное произведение раскладываемого сигнала на соответствующую базисную функцию Уолша:

Следует учитывать периодический характер функций Уолша.

9. Интерполяция: спектральная трактовка, КИХ-фильтры для полиномиальной интерполяции 0- и 1-го порядка; использование полифазной структуры. Интерполяция – процесс цифр. обработки сигналов, приводящий к формированию сигнала y(nT) с повышенной частотой дискретизации из сигнала x(vT’)=x(vLT) с более низкой частотой дискретизации при определенных ограничениях на временные и спектральные изменения исх.сигнала.

Выделяют три разновидности процесса интерполяции ЦОС:

1. Увеличение частоты дискретизации осуществляется в соответствии с математическим понятием интерполяции;

2. При увеличении част.дискр. исходные отсчеты дискретного сигнала x(vT’) оказываются утерянными, однако отсчеты выходного сигала y(nT) могут рассматриваться как отсчеты исходного аналогового сигнала x(t), из которого путем дискретизации с интервалом T’ образован исходный дискретный сигнал x(vT’). В этом случае форма огибающей сигналов x(vT’) и y(nT) (и спектр) не изменяются;

3. Увеличение част.дискретизации приводит к изменению формы интерполируемого сигнала, однако модуль спектра не меняется.

Д-дискретизатор c интервалом дискретизации T’=LT., ИИ-идеальный интерполятор увеличивает част.дискр. в целое число L.После ИИ сигнал можно рассматривать, как результат дискретизации исх.аналогового сигнала x(t) с интервалом дискретизации T=T’/L. , Hφ-дискретная система с частотной хар-кой .



Частотная интерполяция процесса с целым коэффициентом L:

а)спектр исходного аналогового сигнала. б)спектр дискретизированного сигнала с часотой дискретизаии fд. в)спектр дискретизированного сигнала с частотой дискретизации fд’=3fд.

Т.О. процесс повышение частоты дискретизации (интерполяции) – преобразование спектра от б) к в), то есть подавление «лишних» частотных составляющих исх.спектра.

Увеличение частоты дискретизации исх.сигнала в нужное число раз L осуществляет экспандер частоты дискретизации (ЭЧД).

Использование полифазной структуры при интерполяции с использованием КИХ-фильтров. Особенность данной структуры в том, что вместо одного фильтра, работающего на высокой частоте дискретизации, используется несколько фильтров, работающих на низкой частоте. Полифазный фильтр представляет собой набор небольших фильтров, работающих параллельно, каждый из которых обрабатывает только подмножество отсчётов сигнала (если всего имеется N фильтров, каждый фильтр будет обрабатывать только каждый N-й отсчёт). Эквивалентная схема полифазной структуры:

Проектирование КИХ-фильтров для полиномиальной интерполяции 0- и 1-го порядка.

Нулевой порядок. При вычислении очередного отсчета вых сигнала y(nT) с интервалом дискретизации T исп-ся только один отсчет входного интерполируемого сигнала x(vT’) с интервалом дискретизации T’. При увеличении частоты дискретизации в L раз отсчет сигнала x(vT’) повторяется L раз на тактах n=vL, vL+1, …,vL+L-1:

y(nT)=x(vT’), n=vL, vL+1, …,vL+L-1, v=0,1,2,…

Процесс интерполяции нулевого порядка показан на след.рис, где Tз-задержка, вносимая фильтром.

Передаточная функция фильтра

Реализация однородного фильтра:

Входной сигнал x(vT’) записывается в регистр RG с частотой fд’=1/T’, а считывание сигнала y(nT) производится с частотой fд=Lfд’=1/T. Первый порядок(линейная интерполяция) . Пусть дан сигнал x(n)=cos(2πn∙0,125). Между кажд. отсчетом исх. сигнала вставляется L-1 отсчетов (повышение част.дискретизации). Записывается передаточная функция

10. Децимация: спектральная трактовка, КИХ-фильтры для полиномиальной децимации 0- и 1-го порядка; использование полифазной структуры.Децимация - процесс уменьшения частоты дискретизации сигнала.

Рассмотрис сигнал x(t), модуль его спекта а).

x(nT)-дискретизированный сигнал с интервалом дискретизации T, его модуль его спектра в первом случае б), во втором г).

x(лямбдаT)-дискретизированный сигнал x(t) с интервалом дискретизации T’=MT.(M=2), его модуль спектра в первом случае в), во втором д).

Случай 1. При дискретизации с частотой wд1 выполнилось условие условие wд1 2Мwmax.(в нашем случае wд1 4wmax). Сигнал можно восстановить, так как спектр не перекрывается.

Случай 2. При дискретизации с частотой wд2 не выполнилось условие условие wд2 2Мwmax. Сигнал восстановить нельзя, т.к спектр накладывается.

Для выполнения операции децимации в целое число раз М необходимо, чтобы частота дискретизации wд сигнала x(nT), подлежащего децимации, удовлетворяло условию wд 2Мwmax.

Операция децимации осуществляется с помощью компрессора частоты дискретизации(КЧД)(рис слева). КЧД представляет собой ключ, который замыкается в моменты t=nMT=лямбдаT’, то есть из входного сигнала x*(nT) с интервалом дискретизации Т берется только каждый М-й отсчет и формирует сигнал x(лямбдаT’)= x*(лямбдаМТ) с интервалом дискретизации Т=МТ

Использование полифазной структуры при децимации с использованием КИХ-фильтров. Данная структура содержит М параллельных ветвей обработки, в каждой из которых находится фильтр, работающий на «низкой» (выходной) частоте дискретизации. Уравнение, описывающее полифазную структуру децимации:

Где М-целочисл.коэффициент,

G-целое число, r=0, 1,…,M-1.

Т.е. выходная последовательность y(лямбдаT’) схемы есть сумма М последовательностей yk(лямбдаMT’), k=0,1,…,M-1, каждая из которых есть в свою очередь результат фильтрации последовательности yk*(лямбдаMT’)=x(лямбдаМТ-kT) дискретным фильтром с ПФ Hk*(zM) и импульсной характеристики brk=brM+k, причем отсчеты импульсной характеристики k-го фильтра есть отсчеты импульсной характеристики bl фильтра-прототипа,взятые через М-1 отсчет.

Проектирование КИХ-фильтров для полиномиальной децимации 0- и 1-го порядка.

Схема уменьшения частоты дискретизации

Нулевой порядок. В качестве фильтра используется однородный, передаточная функция которого:

АЧХ однородного фильтра

Условие, при котором выбирается порядок фильтра: N=k*M.

Первый порядок. В качестве фильтра используется триангулярный с ПФ.

Из (2.48) получим

(2.49)

С учетом того, что функции Уолша равны ±1, выражение (2.49) запишем в виде

(2.50)

где а п (к) = 0 или 1, определяет знак функции Уолша на интервале
Примеры спектров Уолша.

1. Спектр Уолша прямоугольного импульса s(t) = 1, 0 ≤ t ≤ т (рис. 2.9)

Из (2.50) находим

Спектр Уолша прямоугольного импульса зависит от соотноше­ния между т и Т. При τ/T = 2 v где v - целое положительное число, с учетом значений функций Уолша получим

Разложение прямоугольного импульса по функциям Уолша име­ет вид

Спектр состоит из 2 V составляющих с одинаковыми амплитуда­ми, равными 1/2 V . Спектр содержит конечное число составляющих. При т/Т≠ 2 V структура спектра изменится.


2. Спектр Уолша треугольного импульса (рис. 2.10) При описании треугольного импульса

удобно перейти к безразмерному времени х= t/T

В соответствии с (2.50) находим:


Спектры Уолша при нумерации Хармута и Пэли изображены на рис.2.10, б и в.

3. Спектр Уолша синусоидального импульса (рис. 2.11)

Для синусоидального импульса

переходя к безразмерному времени x = t/T, запишем

Из (2.50) в системе Хармута находим (рис. 2.11):


Спектры Уолша рассматриваемого сигнала при нумерации Хар­мута и Пэли приведены на рис.2.11,6 и в.

2.7А. Свойства спектров Уолша

При анализе сигналов с использованием функций Уолша полез­но учитывать свойства разложения сигналов в базисе Уолша - спектров Уолша.

1. Спектр суммы сигналов равен сумме спектров каждого из сиг­налов.

Спектр сигнала в системе функций Уолша определяется коэф­фициентами разложения (2.47). Для суммы сигналов коэффициен­ты разложения определяются выражением


(2.52)

где а пк - коэффициенты разложения сигнала s k (t).

2. Умножение сигнала на функцию Уолша с номером n изменяет номера коэффициентов разложения с k по закону двоичного сдвига по модулю два

3. Спектр Уолша произведения сигналов s 1 (t) и s 2 (t). определен­ных на интервале . Такие функции описывают пе­риодические сигналы с ограниченной мощностью.


Для четной функции s(t), как это следует из (3.2),

(3.3)

для нечетной функции s(t):

(3.4)

Обычно при анализе сигналов используется разложение s(t) в виде

(3.5)

Периодический сигнал представляется в виде суммы гармони­ческих составляющих с амплитудами А n и начальными фазами.

Совокупность амплитуд {Д,} определяет амплитудный спектр, а совокупность начальных фаз {φ n } - фазовый спектр сигнала (рис.3.1,а). Как следует из (3.5), спектры периодических сигналов являются дискретными или линейчатыми, интервал дискретизации по частоте равен частоте сигнала ω 1 = 2π/ Т.

Тригонометрический ряд Фурье можно записать в комплексной форме

(3.7)

(3.8)

Переход от (3.1) к (3.7) очевиден с учетом формулы Эйлера

(3.9)


Коэффициенты с n в общем случае являются комплексными ве­личинами

При использовании комплексной формы ряда Фурье сигнал оп­ределяется совокупностью комплексных амплитуд {с n }. Модули комплексных амплитуд |с n | описывают амплитудный спектр, аргу­менты φ n - фазовый спектр сигнала (рис. 3.1,6).

Представив (3.8) в виде

(3.11)

Как следует из записанных выражений, амплитудный спектр об­ладает четной, а фазовый - нечетной симметрией


(3.13)

Из сопоставления выражений (3.2) и (3.11) следует

В качестве примера рассмотрим периодическую последователь­ность прямоугольных импульсов (рис. 3.2,а). При разложении пе­риодической последовательности прямоугольных импульсов в три­гонометрический ряд Фурье из (3.2) получим амплитудный и фазо­вый спектры в виде (рис.3.2,б):

При использовании комплексной формы ряда Фурье
из (3.8) следует:

Амплитудный и фазовый спектры сигнала равны

Предельным видом ряда Фурье является интеграл Фурье. Пе­риодический сигнал при Т → ∞ становится непериодическим. Под­ставив (3.8) в (3.7), запишем

(3.16)


Гармонический анализ сигналов

Преобразуя (3.16), при T→∞ (в этом случае ω 1 → dω и пω 1 = ω), получаем

(3.17)

В квадратных скобках записан интеграл Фурье, он описывает спектральную плотность сигнала


Выражение (3.17) примет вид

Записанные соотношения представляют прямое и обратное преобразования Фурье. Они используются при гармоническом ана­лизе непериодических сигналов.

3.2. Гармонический анализ непериодических сигналов

Прямое и обратное преобразования Фурье устанавливают вза­имно однозначное соответствие между сигналом (временной функ­цией, описывающей сигнал s(t)) и его спектральной плотностью S(ω):

(3.18)

Соответствие по Фурье обозначим:

(3.19)

Условием существования преобразования Фурье является аб­солютная интегрируемость функции s(t)

(3.20)

В практических приложениях более удобным является условие интегрируемости квадрата этой функции

(3.21)

Для реальных сигналов условие (3.21) эквивалентно условию (3.20), но имеет более очевидный физический смысл: условие (3.21) означает ограниченную энергию сигнала. Таким образом, можем считать возможным применение преобразования Фурье к сигналам с ограниченной энергией. Это непериодические (импульс­ные) сигналы. Для периодических сигналов разложение на гармо­


нические составляющие производится с помощью ряда Фурье.

Функция S(ω) в общем случае является комплексной

где Re, lm - действительная и мнимая части комплексной величины; |s(w)|, ф(оо)- модуль и аргумент комплексной величины:

Модуль спектральной плотности сигнала |S(ω)| описывает рас­пределение амплитуд гармонических составляющих по частоте, на­зывается амплитудным спектром. Аргумент φ(ω) дает распределе­ние фазы по частоте, называется фазовым спектром сигнала. Ам­плитудный спектр является четной функцией, а фазовый спектр - нечетной функцией частоты

С учетом формулы Эйлера (3.9) выражение для S(ω) запишем в виде

(3.24)

Если s(t)четная функция, то из (3.24) получим

(3.25)

Функция S(ω), как следует из (3.25), является действительной функцией. Фазовый спектр определяется как

(3.26)

Для нечетной функции s(t) из (3.24) получим

(3.27)


Функция S(ω) является чисто мнимой, фазовый спектр

(3.28)

Любой сигнал можно представить как сумму четной s ч (t) и нечет­ной s H (t) составляющих

(3.29)

Возможность такого представления становится ясной с учетом следующих равенств:

Из (3.24) и (3.29) получим

(3.30)

Следовательно, для действительной и мнимой частей спек­тральной плотности сигнала можно записать:

Таким образом, действительная часть спектральной плотности представляет преобразование Фурье от четной составляющей, мнимая часть - от нечетной составляющей сигнала. Действитель­ная часть комплексной спектральной плотности сигнала является четной, а мнимая часть - нечетной функцией частоты.

Спектральная плотность сигнала при ω = 0

(3.31)

равна площади под кривой s(t).

В качестве примеров получим спектры некоторых сигналов.

1. Прямоугольный импульс (рис. 3.3,а)


где τ и - длительность импульса.

Спектральная плотность сигнала


Графики амплитудного и фазового спектров сигнала приведены на рис. 3.3,б,в.

2. Сигнал, описываемый функцией

Спектральная плотность сигнала определяется выражением

Интегрируя по частям n-1 раз, получаем

Сигнал (рис. 3.4,а)

имеет спектральную плотность

Графики амплитудного и фазового спектров изображены на рис. 3.4,б,в.

Сигнал (рис. 3.5,а)

имеет спектральную плотность

Графики амплитудного и фазового спектров - рис. 3.5,б,в.

Число примеров увеличивает табл. 3.1.

Сравнение (3.18) и (3.8) показывает, что спектральная плотность одиночного импульса при τ<

С учетом указанного соотношения определение спектра периоди­ческого сигнала в ряде случаев можно упростить, используя преобра­зование Фурье (3.18). Коэффициенты ряда Фурье находятся как

(3.32)

где S(ω) - спектральная плотность одного импульса.

Таким образом, при определении амплитудного и фазового спектров периодических сигналов полезно иметь в виду следующие равенства:


Коэффициент 1/T может рассматриваться как интервал частот между соседними составляющими спектра, а спектральная плот­ность как отношение амплитуды составляющей сигнала к интерва­лу частот, которому соответствует амплитуда. С учетом этого ста­новится более понятным термин «спектральная плотность». Не­прерывные амплитудный и фазовый спектры одиночного импульса являются огибающими дискретных амплитудного и фазового спек­тров периодической последовательности таких импульсов.

С помощью соотношений (3.33) результаты, приведенные в табл. 3.1, можно использовать для определения спектров перио­дических последовательностей импульсов. Такой подход иллюст­рируют следующие примеры.


1. Периодическая последовательность прямоугольных им­пульсов (табл. 3.1, п. 1), рис. 3.2.

Записанное выражение повторяет результат примера п.3.1.

2. Периодическая последовательность меандровых импульсов (табл. 3.1, п.2), рис. 3.6, рис. 3.2.


3. Периодическая последовательность экспоненциальных импульсов (табл. 3.1, п.8), рис. 3.7.


Таблица 3.1

Сигналы и их спектры






3.3. Частотные спектры сигналов, представленных в виде обобщенного ряда Фурье

При представлении сигнала в виде обобщенного ряда Фурье полезно иметь преобразование Фурье базисных функций. Это по­зволит от спектра в базисе различных ортогональных систем пе­рейти к частотному спектру. Ниже приведены примеры частотных спектров некоторых видов сигналов, описываемых базисными функциями ортогональных систем.

1 .Сигналы Лежандра.

Преобразование Фурье многочлена Лежандра (разд. 2) имеет вид

(3.34)

п= 1,2, ... - многочлен Лежандра; - функция Бесселя.

Используя (3.34), от сигнала, представленного в виде ряда


с коэффициентами

(3.35)

Выражение (3.35) описывает спектральную плотность сигнала s(f) в виде ряда.

Графики составляющих спектра с номерами 1 - 3 приведены на рис.3.8.

2. Сигналы Лагерра.

Преобразование Фурье функции Лагерра имеет вид

(3.36)

п= 1,2,...- функции Лагерра.

Используя (3.36), от сигнала, представленного в виде ряда раз­ложения по многочленам Лагерра (разд. 2)

с коэффициентами

можно перейти к спектральной плотности сигнала

(3.37)


3. Сигналы Эрмита.

Преобразование Фурье функции Эрмита имеет вид

(3.38)


п= 1,2,...- функции Эрмита.

Из (3.38) следует, что функции Эрмита обладают свойством трансформируемости, т.е. функции и их преобразования Фурье равны (с точностью до постоянных коэффициентов). Используя (3.38), от сигнала, представленного в виде ряда разложения по многочленам Эрмита

с коэффициентами

можно перейти к спектральной плотности сигнала

(3.39)

4. Сигналы Уолша.

Частотные спектры сигналов Уолша (сигналов, описываемых функциями Уолша) определяются следующим преобразованием Фурье:

(3.40)

где wal(n,x) - функция Уолша.

Так как функции Уолша имеют N участков постоянных значений,

где х к - значение х на к-ом интервале.


Из (3.41) получим

где

Так как функции Уолша принимают значения ±1, то (3.42) можем записать в виде

(3.43)

где а n (к) = 0 или 1 определяет знак функции wal(n,x k).

На рис. 3.9 приведены графики амплитудных спектров первых шести сигналов Уолша.

3.4. Спектры сигналов, описываемых неинтегрируемыми функциями

Преобразование Фурье существует только для сигналов с ко­нечной энергией (для которых выполняется условие (3.21)). Расши­рить класс сигналов, анализируемых с использованием преобразо­вания Фурье, позволяет чисто формальный прием, основанный на введении понятия спектральной плотности для импульсной функ­ции. Рассмотрим некоторые из таких сигналов.

1. Импульсная функция.

Импульсная функция (или δ - функция) определяется как

(3.44)

Из определения импульсной функции следует ее фильтрующее свойство

(3.45)

Спектральную плотность импульсной функции определим как

(3.46)


Амплитудный спектр равен единице, фазовый спектр φ(ω) = ωt 0 (рис. 3.10).

Обратное преобразование Фурье дает


По аналогии с (3.47) для частотной области запишем

(3.48)

Используя полученные выражения, определим спектральные плотности некоторых видов сигналов, описываемых функциями, для которых не существует преобразования Фурье.

2. Постоянный сигнал s(t) = s 0 .

С учетом (3.48) получим (рис. 3.11)

(3.49)

3. Гармонический сигнал.

Спектральная плотность сигнала получится с учетом (3.48) в виде


При φ = 0 (рис. 3.12)

Для сигнала

(3.53)

по аналогии с (3.52) найдем

4. Единичная ступенчатая функция.

(3.55)

Единичную ступенчатую функцию σ(t) будем рассматривать как предельный вид экспоненциального импульса

Экспоненциальный импульс представим в виде суммы четной и нечетной составляющих (3.29)

Публикации по теме